





# NH<sub>3</sub> Losses Following Soil-Surface Application of Poultry Manures in Eastern Canada

Ezequiel Miola<sup>(1)</sup>, Philippe Rochette<sup>(2)</sup>; Denis Angers<sup>(2)</sup>; Martin Chantigny<sup>(2)</sup>; Marc-Olivier Gasser<sup>(3)</sup>; David Pelster<sup>(2)</sup>; Normand Bertrand<sup>(2)</sup>; Celso Aita<sup>(1)</sup>

<sup>(1)</sup> Federal University of Santa Maria, Santa Maria, Brazil; <sup>(2)</sup> AAFC, Quebec City, Canada; <sup>(3)</sup> IRDA, Québec City, Canada

# INTRODUCTION

- ✓ In Canada, land application of poultry manure results in the volatilization of 10.8 Gg NH<sub>3</sub>-N annually (Sheppard and Bittman, 2013);
- $\checkmark$  NH<sub>3</sub> emissions from surface-applied poultry manure may be influenced by previous manure handling and storage;
- $\checkmark$  There are few reports of relationships between field NH<sub>3</sub> emissions and poultry ammoniacal N (TAN), dry matter and pH manure characteristics: total



(Misselbrook et al., 2005a); pH (Lau et al., 2010).

# **OBJECTIVES**

Quantify NH<sub>3</sub> losses from several poultry manure types commonly found in  $\checkmark$ 

Eastern Canada, and relate  $NH_3$  emissions to manure TAN applied.

# MATERIAL AND METHODS

- Site: Québec City, Canada (lat. 46°05'N, long. 71°02'W, elevation 110 m);
- **Period:** 6 to 28 August 2012;
- **Soil:** Loamy Typic Humaquept (30% sand, 19% clay);
- Experimental design: Randomized complete block with three replicates;
- **NH<sub>3</sub> emission measurement:** Wind tunnels (Lockyer, 1984);  $\checkmark$
- **Treatments:** Seven different poultry manures;
- **Application rate:** 20 g total N m<sup>-2</sup>

| $(  N_1 - ()1)$ |  |
|-----------------|--|

Manure-NH<sub>4</sub><sup>+</sup> (g N m<sup>-2</sup>)

Manure-NH<sub>4</sub><sup>+</sup> (g N m<sup>-2</sup>)

Figure 1. Cumulative NH<sub>3</sub> losses (a), NH<sub>3</sub> emissions as a fraction of manure total N (TN) and total ammoniacal N (TAN) applied (b), cumulative  $NH_3$  losses vs TAN applied in this study (c) and for the summary of literature data on poultry manures (d). (LM: Layer Manure, BL: Broiler Litter, O: Old, Y: Young, D: Dry)

Table 3. Time after manure application when  $NH_3$  losses reached 5 to 75% of total emissions

| 5% | 10% | 20% | 30% | 40% | 50% | 75% |
|----|-----|-----|-----|-----|-----|-----|



### Table 1. Selected characteristics of the poultry manures (wet basis).

| Trootmonto+             | рΗ                     | Dry Matter | NH <sub>4</sub> +-N | NO <sub>3</sub> ⁻-N | Organic N | Total N | Total C | C/N  |  |
|-------------------------|------------------------|------------|---------------------|---------------------|-----------|---------|---------|------|--|
| Treatments <sup>1</sup> | (%) g kg <sup>-1</sup> |            |                     |                     |           |         |         |      |  |
| LM-O1                   | 7.9                    | 61.4       | 5.6                 | 0.0                 | 35.3      | 40.9    | 189.1   | 4.6  |  |
| LM-O2                   | 8.4                    | 43.5       | 13.9                | 0.0                 | 12.9      | 26.8    | 129.2   | 4.8  |  |
| LM-Y                    | 8.0                    | 37.0       | 6.0                 | 0.0                 | 18.5      | 24.5    | 120.6   | 4.9  |  |
| LM-YD1                  | 7.9                    | 94.9       | 0.7                 | 0.0                 | 36.3      | 37.0    | 315.1   | 8.5  |  |
| LM-YD2                  | 7.1                    | 69.9       | 2.3                 | 0.0                 | 33.7      | 36.0    | 235.2   | 6.5  |  |
| BL-O                    | 8.5                    | 51.9       | 3.2                 | 0.0                 | 14.6      | 17.8    | 178.8   | 10.1 |  |
| BL-Y                    | 8.4                    | 64.8       | 4.0                 | 0.1                 | 19.6      | 23.7    | 266.6   | 11.2 |  |

<sup>†</sup> LM: Layer Manure, BL: Broiler Litter, O: Old, Y: Young, D: Dry.

### Table 2. Details of the poultry manure handling and storage.

| Treatmen | ts <sup>†</sup> Description                                                                         |
|----------|-----------------------------------------------------------------------------------------------------|
| LM-O1    | Layer manure, old, compact, stockpiled for more than 7 months in a closed shed.                     |
| LM-O2    | Layer manure, old, stockpiled wet: 4 months on a concrete platform followed by 40 d in the field.   |
| LM-Y     | Layer manure, young, stored beneath the cages and removed twice a week.                             |
| LM-YD1   | Layer manure, young, droppings were dried with an efficient system within 24 h, and then stockpiled |

| Time after manure application (h) |                                                 |                                                       |                                                                                      |                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                                                 |  |
|-----------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.4                               | 3.5                                             | 12.3                                                  | 30.3                                                                                 | 61.2                                                                                                                       | 108.3                                                                                                                                                             | 270.0                                                                                                                                                                                           |  |
| 0.6                               | 0.9                                             | 1.9                                                   | 4.2                                                                                  | 9.0                                                                                                                        | 18.3                                                                                                                                                              | 97.0                                                                                                                                                                                            |  |
| 0.7                               | 1.0                                             | 2.3                                                   | 4.8                                                                                  | 9.8                                                                                                                        | 19.8                                                                                                                                                              | 104.8                                                                                                                                                                                           |  |
| 25.8                              | 124.7                                           | 168.3                                                 | 177.2                                                                                | 187.3                                                                                                                      | 199.5                                                                                                                                                             | 254.5                                                                                                                                                                                           |  |
| 22.8                              | 109.7                                           | 173.8                                                 | 183.8                                                                                | 195.0                                                                                                                      | 208.0                                                                                                                                                             | 257.7                                                                                                                                                                                           |  |
| 0.0                               | 0.0                                             | 0.1                                                   | 0.4                                                                                  | 2.2                                                                                                                        | 9.0                                                                                                                                                               | 115.8                                                                                                                                                                                           |  |
| 0.4                               | 1.3                                             | 6.2                                                   | 19.3                                                                                 | 47.5                                                                                                                       | 99.7                                                                                                                                                              | 231.2                                                                                                                                                                                           |  |
|                                   | 1.4<br>0.6<br>0.7<br>25.8<br>22.8<br>0.0<br>0.4 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Time after1.43.512.30.60.91.90.71.02.325.8124.7168.322.8109.7173.80.00.00.10.41.36.2 | Time after manure app1.43.512.330.30.60.91.94.20.71.02.34.825.8124.7168.3177.222.8109.7173.8183.80.00.00.10.40.41.36.219.3 | Time after manure application (h)1.43.512.330.361.20.60.91.94.29.00.71.02.34.89.825.8124.7168.3177.2187.322.8109.7173.8183.8195.00.00.00.10.42.20.41.36.219.347.5 | Time after manure application (h)1.43.512.330.361.2108.30.60.91.94.29.018.30.71.02.34.89.819.825.8124.7168.3177.2187.3199.522.8109.7173.8183.8195.0208.00.00.00.10.42.29.00.41.36.219.347.599.7 |  |

<sup>†</sup> LM: Layer Manure, BL: Broiler Litter, O: Old, Y: Young, D: Dry.

## CONCLUSIONS

- $\checkmark$  NH<sub>3</sub> losses accounted for 13.6 to 35% of TN;
- $\checkmark$  Linear regressions between cumulative NH<sub>3</sub> losses and applied TAN explained 85, 92 and 84% for the first 26 h, 7 d and 22 d, respectively;
- $\checkmark$  Literature data indicates that, on average, 36% of poultry manure TAN is lost
  - as NH<sub>3</sub> with a contribution of other NH<sub>4</sub> sources estimated at 0.41 g NH<sub>3</sub> m<sup>-2</sup>;
- ✓ Incorporation of dried manures (LM-YD1 and LM-YD2) can wait until first
  - rainfall. Omitting the dried manures, the mean incorporation delay to limit

#### for 20 d in a closed shed.



#### **BL-O** Broiler litter with wood shavings, old, stockpiled for more than 7 months in a closed shed.

#### **BL-Y** Broiler litter with wood shavings, young, stockpiled for 5 d in the field.

<sup>+</sup> LM: Layer Manure, BL: Broiler Litter, O: Old, Y: Young, D: Dry.



### $\checkmark$ NH<sub>3</sub> losses using semi-open chambers = 30% of wind tunnels estimates.

Lau et al. (2008) Can. Biosyst. Engin. 50:647-655; Lockyer (1984) J. Sci. Food Agric. 35:837-848; Lockyer (1989) Environ. Pollut. 56:19-30; Sharpe et al. (2004) J. Environ. Qual. 33:1183-1188; Marshall et al. (1998) J. Environ. Qual. 27: 1125-1129; Misselbrook, et al. (2005a) Bioresour. Technol. 96:159-168; Misselbrook, et al. (2005b) Environ. Pollut. 135:389-397; Rodhe and Karlsson (2002) Biosyst. Engin. 82:455-462; Sheppard and Bittman (2013) Agric. Ecosyst. Environ. 171:90-10.