Soil Crusting Under Intense Rainfall as Influenced by Cohesive and Wetting Factors

Mark N. Wuddivira1, Reynold J. Stone1, Edwin I. Ekwe2
1 Department of Food Production, University of the West Indies, St. Augustine, Trinidad and Tobago.
2 Department of Mechanical and Manufacturing Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago.
*mark.wuddivira@sta.uwi.edu

Introduction

- Delterious land practices such as deforestation, slash and burn agriculture, and seasonal fires in the Caribbean expose the soil surface to the direct impact of intense tropical rainfall.
- The susceptibility of the exposed soil to aggregate disintegration and the associated crusting depends on the cohesive strength of soil binding factors and the magnitude of disruptive forces of rapid wetting and raindrop impact produced by the intense rainfall.
- We hypothesize that clay and organic matter (OM) concentrations in soils subjected to varying pre-wetting conditions influence aggregate cohesion and crust formation.

Objectives

- Quantify the effects of wetting conditions on the resistance of soils of varying levels of clay and OM to crusting under continuous intense simulated rainfall events typical of the tropics.
- Investigate the relationship between shear and crust strength with splash detachment (SD) and aggregate breakdown (AB) of soils of varying levels of clay and OM subjected to different wetting conditions and exposed to intense rainfall.

Methods & Materials

- Six soils from Trinidad were selected to give a combination of three concentrations of clay (low, ≤200 g kg⁻¹; medium, 400–450 g kg⁻¹; and high, ≥450 g kg⁻¹) and two concentrations of organic matter (low, ≤30 g kg⁻¹ and high, >30 g kg⁻¹).
- Samples in columns 7.3 cm in d and 5 cm high were either left dry or pre-wetted with moist at slow (7.5 mm h⁻¹) and fast (75 mm h⁻¹) wetting rates and equivalent to matric suction of ~0.033 MPa and ~0.066 MPa.
- SD and AB were determined after exposing the soil columns to 120 mm h⁻¹ rain for 10 min.
- Shear and Crust strength were determined with a drop cone penetrometer (Tawney, 1973).

Results and Discussion

- Slow (7.5 mm h⁻¹) and fast (75 mm h⁻¹) pre-wetting of the soils to the different antecedent water contents (0.5FC and FC) significantly increase shear strength than exposing initially dry soil samples to the intense simulated rainfall (Fig. 1).
- Pre-wetting aids clay movement and orientation and careful removal of intra-aggregate entrapped air encouraging soil cohesion (Wuddivira et al., 2009).
- Fast wetting decreases effective stress the component of the matric suction holding particles together (Horn et al., 1994). This decreases inter-particle contact points and bonding, weakening shear strength.

- The nonlinear power model yielded the best fits for the relationship between 5D (r²=0.851, Fig. 3a) and AB (r²=0.795, Fig. 3b) with shear strength. The power model explains 85% and 80% of the variability in 5D and AB respectively.
- The power model mechanistically revealed that erodibility decreases as shear strength increases up to a threshold shear strength after which SD and AB do not decrease further but may become non-existent with increase in shear strength.
- The model separated the soils into two groups of aggregates of medium and high clay high in OM that sheared, splashed and broke minimally and of aggregates of low, medium and high clay low in OM that sheared, splashed and broke heavily (Fig. 3).
- The model indicates that soils with shear strength of <0.2 kPa crust and erode heavily while a minimum shear strength of 0.8 kPa, induced at the medium clay level with high OM, is required to decrease the crust formation and erodibility to zero under intense rainfall (Fig. 3).

Acknowledgements

Technical Support of this research was provided by Melissa Atwell, Dexter Bristol and Conrad Calliste.