

# Effect of Nitrogen Source, Method and Timing of Application, and Irrigation on Corn in a Water Limited Environment

Jacob T. Bushong<sup>1</sup>, Jeremiah L. Mullock<sup>1</sup>, Eric C. Miller<sup>1</sup>, and William R. Raun<sup>1</sup>



<sup>1</sup>Department of Plant & Soil Sciences, Oklahoma State University

#### Introduction

With the demand for corn increasing, production has spread into more water limited, semi-arid regions. Couple this with increasing nitrogen (N) fertilizer costs and environmental concerns, the need for proper N fertilizer management practices has increased.

## Objective

The objective of this experiment was to evaluate the effect of N fertilizer sources, method and timing of application, and irrigation on corn grain yield, grain N content, N use  $\mathbf{ff}$ 

| Table 1. Analysis of variance and sing             | gle degre      | e of freed | iom con | trast resu | ılts for tł    | ne four site | years a | inalyzed | in this tri    | ial.    |          |     |                |         |       |      |
|----------------------------------------------------|----------------|------------|---------|------------|----------------|--------------|---------|----------|----------------|---------|----------|-----|----------------|---------|-------|------|
|                                                    | 2012 STW       |            |         |            | 2013 STW       |              |         | 2012 LCB |                |         | 2013 LCB |     |                |         |       |      |
|                                                    | Grain<br>Yield | Grain N    | NUE     | WUE        | Grain<br>Yield | Grain N      | NUE     | WUE      | Grain<br>Yield | Grain N | NUE      | WUE | Grain<br>Yield | Grain N | NUE   | WUE  |
| Parameter                                          |                |            |         |            |                |              |         |          |                |         |          |     |                |         |       |      |
| Irrigation                                         | **             | ***        | NS      | NS         | ***            | ***          | NS      | ***      | ***            | **      | NS       | **  | ***            | NS      | NS    | ***  |
| Fert. Treatment                                    | NS             | ***        | NS      | NS         | NS             | NS           | NS      | NS       | **             | **      | ***      | NS  | ***            | ***     | ***   | ***  |
| Irrigation X Fert. Treatment                       | NS             | *          | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | **       | NS  | **             | NS      | **    | **   |
| Contrasts <sup>†</sup>                             |                |            |         |            |                |              |         |          |                |         |          |     |                |         |       |      |
| UAN vs. AS                                         | NS             | 0.08       | NS      | NS         | 924            | NS           | NS      | 1.4      | NS             | NS      | NS       | NS  | NS             | NS      | NS    | NS   |
| UAN all pre vs. split                              | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | NS       | NS  | NS             | NS      | -28.0 | NS   |
| AS all pre vs. UAN split                           | NS             | NS         | NS      | NS         | -1531          | NS           | -26.4   | -2.7     | NS             | 0.12    | NS       | NS  | NS             | NS      | -25.3 | NS   |
| All pre vs. foliar                                 | NS             | 0.08       | NS      | NS         | NS             | NS           | -10.0   | NS       | 899            | NS      | 9.3      | 0.4 | NS             | NS      | -31.9 | NS   |
| 45 vs. 90 kg N ha <sup>-1</sup> foliar             | NS             | NS         | NS      | NS         | NS             | NS           | 13.0    | NS       | NS             | NS      | 10.0     | NS  | NS             | NS      | 15.6  | NS   |
| Foliar vs. UAN split                               | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | NS       | NS  | 1496           | NS      | NS    | NS   |
| Irr-UAN vs. AS                                     | NS             | NS         | NS      | NS         | 1462           | NS           | NS      | 2.1      | NS             | NS      | NS       | NS  | NS             | NS      | NS    | NS   |
| Rf-UAN vs. AS                                      | NS             | 0.10       | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | -10.1    | NS  | NS             | NS      | NS    | NS   |
| Irr-UAN all pre vs. split                          | NS             | NS         | NS      | NS         | 2110           | NS           | NS      | 3.5      | NS             | NS      | NS       | NS  | NS             | NS      | -39.1 | NS   |
| Rf-UAN all pre vs. split                           | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | NS       | NS  | NS             | NS      | NS    | NS   |
| Irr-AS all pre vs. split                           | NS             | NS         | NS      | NS         | NS             | NS           | -29.7   | NS       | NS             | NS      | NS       | NS  | NS             | NS      | -32.0 | NS   |
| Rf-AS all pre vs. split                            | NS             | NS         | NS      | NS         | -1957          | NS           | NS      | -3.8     | NS             | 0.19    | NS       | NS  | NS             | NS      | NS    | NS   |
| Irr-All pre vs. foliar (45 kg N ha <sup>-1</sup> ) | NS             | NS         | 15.4    | NS         | NS             | NS           | NS      | NS       | NS             | NS      | 9.1      | NS  | NS             | NS      | -26.8 | NS   |
| Rf-All pre vs. foliar (45 kg N ha <sup>-1</sup> )  | -1865          | 0.18       | -11.3   | -0.8       | NS             | NS           | NS      | NS       | 1259           | NS      | 11.3     | 0.6 | NS             | NS      | -38.8 | NS   |
| Irr-All pre vs. foliar (90 kg N ha <sup>-1</sup> ) | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | 1407           | NS      | 11.9     | 0.5 | -2741          | NS      | -54.6 | -3.9 |
| Rf-All pre vs. foliar (90 kg N ha <sup>-1</sup> )  | NS             | 0.15       | NS      | NS         | NS             | NS           | NS      | NS       | NS             | 0.10    | NS       | NS  | NS             | NS      | NS    | NS   |
| Irr-45 vs. 90 kg N ha <sup>-1</sup> foliar         | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | 12.0     | NS  | -2202          | NS      | NS    | -3.1 |
| Rf-45 vs. 90 kg N ha <sup>-1</sup> foliar          | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | 7.9      | NS  | NS             | -0.20   | 46.3  | NS   |
| Irr-foliar vs UAN split                            | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | NS       | NS  | NS             | NS      | NS    | NS   |
| Rf-foliar vs UAN split                             | NS             | NS         | NS      | NS         | NS             | NS           | NS      | NS       | NS             | NS      | NS       | NS  | -3893          | NS      | NS    | -5.4 |

| efficiency (NUE), and | water use efficiency ( | WUE). |
|-----------------------|------------------------|-------|
|-----------------------|------------------------|-------|

# **Materials & Methods**

### **Research Sites**

- Lake Carl Blackwell, Oklahoma (LCB-2012, LCB-2013)
- Port-Oscar complex, 0 to 1 percent slopes  $\bullet$
- Stillwater, Oklahoma (STW-2012)
- Easpur loam, 0 to 1 percent slopes  $\bullet$
- Stillwater, Oklahoma (STW-2013)
- Norge loam, 3 to 5 percent slopes

#### Treatments

Irrigated vs. Rain-fed

- Irrigation applied with drip irrigation
- Irrigation ceased once crop reached R6 growth stage

Fertilizer Treatments

- . unfertilized check
- 2. 90 kg N ha<sup>-1</sup> as UAN pre-plant
- 3. 90 kg N ha<sup>-1</sup> as AS pre-plant
- 4. 45 kg N ha<sup>-1</sup> as UAN pre-plant/45 kg N ha<sup>-1</sup> foliar 5. 45 kg N ha<sup>-1</sup> as AS pre-plant/45 kg N ha<sup>-1</sup> foliar 6. 180 kg N ha<sup>-1</sup> as UAN pre-plant • 7. 180 kg N ha<sup>-1</sup> as AS pre-plant 8. 90 kg N ha<sup>-1</sup> as UAN pre-plant/90 kg N ha<sup>-1</sup> foliar 9. 90 kg N ha<sup>-1</sup> as AS pre-plant/90 kg N ha<sup>-1</sup> foliar 10. 90 kg N ha<sup>-1</sup> as UAN pre-plant/90 kg N ha<sup>-1</sup> as UAN surface

\*\*\*, \*\*, \* significant at the 0.01, 0.05, and 0.10 level, respectively.

Numbers in bold represent the difference between contrast groups that are significant at the 0.10 level. Units for measured dependent variables: grain yield, kg ha<sup>-1</sup>; grain N, percent; NUE, percent; WUE, kg ha<sup>-1</sup> mm<sup>-1</sup>.

100

| 14000 - |       |  |  |  |
|---------|-------|--|--|--|
| 14000 - |       |  |  |  |
|         | □ Yld |  |  |  |

**Results & Conclusions** 

- UAN=urea-ammonium nitrate (28-0-0)
- AS = ammonium sulfate (21-0-0)
- Foliar treatments split applied at V8/V10 in 2012 and at V10/V12 in 2013.

# Measurements

- Grain yield (kg ha<sup>-1</sup>)
- Adjusted to 155 g kg<sup>-1</sup>
- Grain N content (percent)
- Dry combustion
- NUE (percent)
  - Difference method
  - WUE (kg ha<sup>-1</sup> mm<sup>-1</sup>)
  - 2012-Included irrigation and rainfall
  - 2013-Included irrigation, rainfall, and soil profile moisture

## **Statistical Analysis**

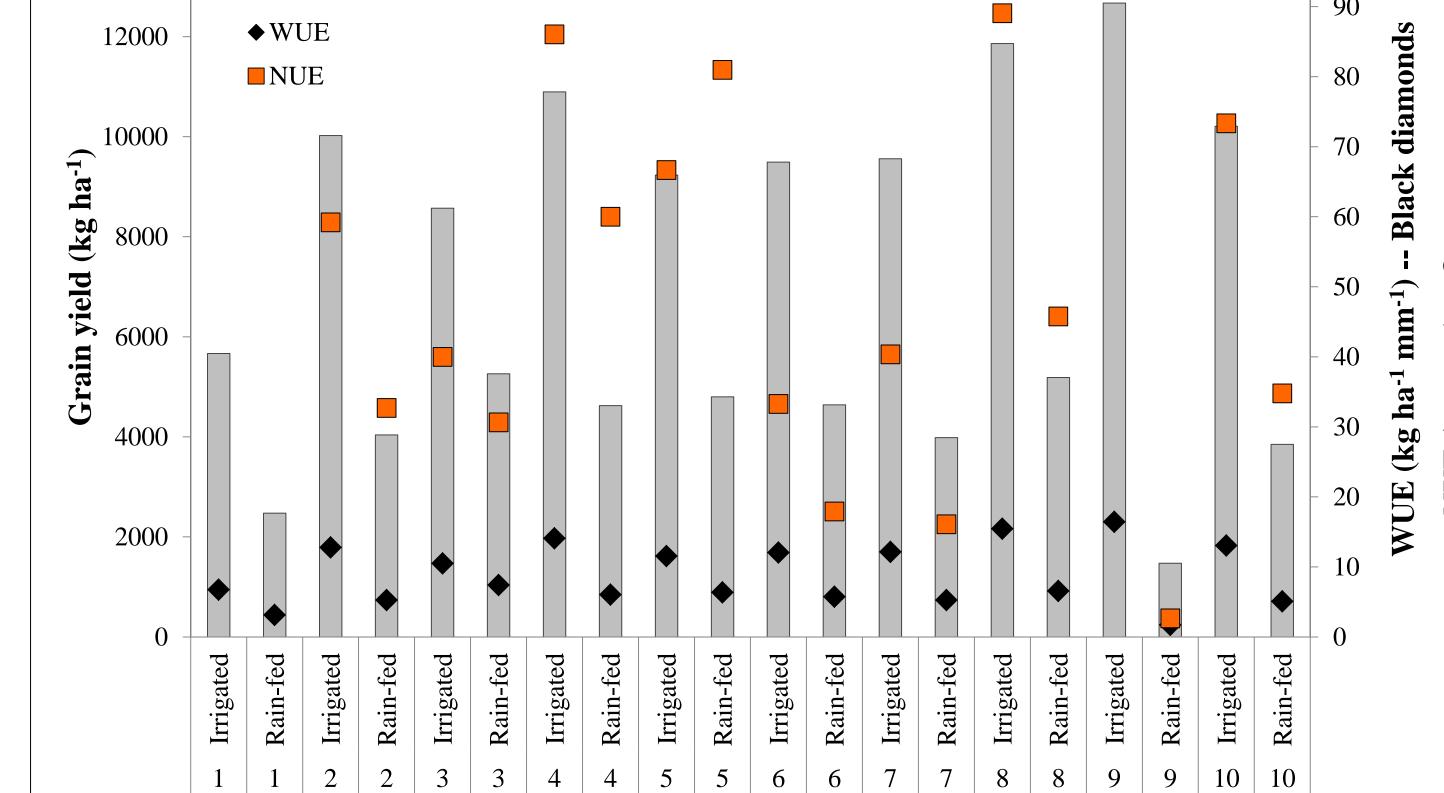
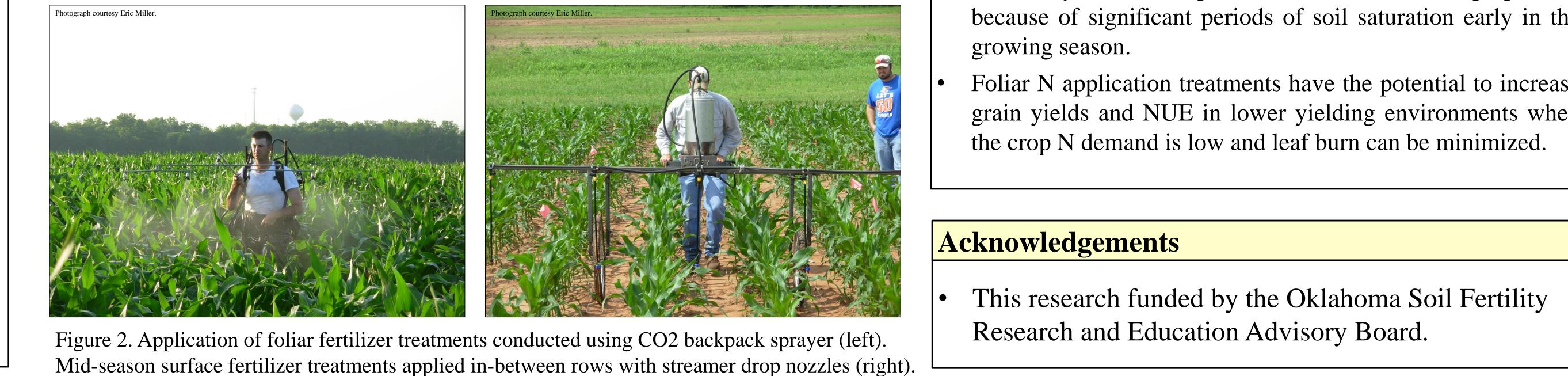




Figure 1. Average grain yield, nitrogen use efficiency (NUE), and water use efficiency (WUE) values for LCB, 2013.



- Results varied too much from site-year to site-year to determine if AS or UAN was more preferable as a preplant N fertilizer. This was likely due to the major differences in environmental conditions for each site-year.
- Split applications of UAN typically increased grain yield and NUE, regardless of irrigated or rain-fed conditions.
- For STW-2012, compared to the treatments receiving all the N at preplant, an increase in grain yield, grain N, NUE, and WUE for the rain-fed site receiving the 45 kg N ha<sup>-1</sup> foliar rate was observed. The inverse of this was observed for the same rate in the irrigated site.
- For LCB-2012, significantly lower yields were observed for foliar treatments. This was likely due to extreme burn damage from treatments applied at this site.
- For LCB-2013, mid-season foliar and surface applied fertilizer treatments increased grain yields and NUE. This was likely due to the potential increased loss of preplant N because of significant periods of soil saturation early in the
- Foliar N application treatments have the potential to increase grain yields and NUE in lower yielding environments when



Replications and fertilizer treatments nested with irrigation Site-years analyzed separately

Single degree of freedom contrasts used to test differences

• Alpha level 0.10 used to determine differences