Soil-to-Atmosphere Greenhouse Gas Emissions from High- and Low-Input **Turf Systems of Central Kentucky**

Daniel Weber, Rebecca McCulley, and David Williams - Dept. of Plant and Soil Sciences, University of Kentucky (dan.weber@uky.edu)

Research Question: Are there differences in trace gas emissions between homeowner lawn types and maintenance regimes?

Hypotheses

- H₁: Over the entire season, the high maintenance turf will have both higher CO₂ and N₂O flux rates than the low maintenance turf.
- H₂: Fertilizer applications to the high maintenance turf will stimulate a spike in N₂O, NH₃, and CO₂ loss.

Background

- Different turf and management types may effect trace gas fluxes.
- Turf covers 20 million Ha in the United States.
- Mostly concentrated in urban areas.
- Turf systems release trace greenhouse

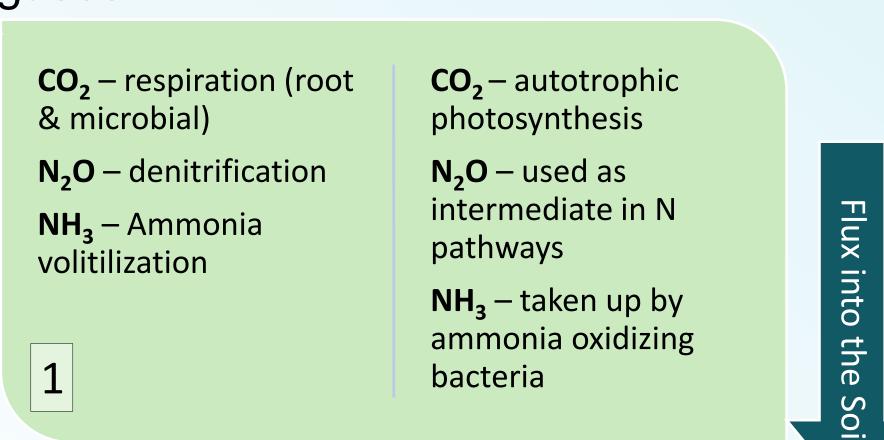
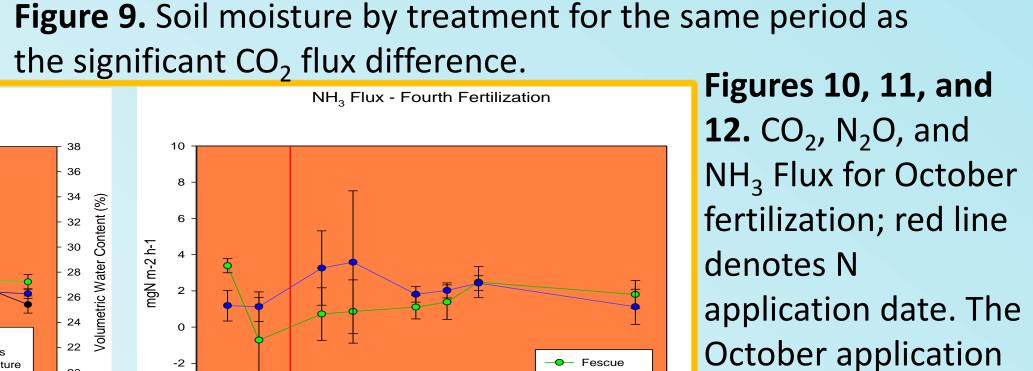


Figure 1. General diagram of trace gas movement in and out of soil. Measured flux is the net flux out of the soil.


Results Fescue Bluegrass Findemic Figures 5, 6, and 7. CO₂, N₂O, and NH₃ flux respectively for t. fescue, Ky. bluegrass, and endemic stands for the whole growing season. CO₂ Flux - Summer 2013 Soil Moisture - Summer 2013 treatment: p=0.3093 Fescue Bluegrass me*treatment: **p=0.0107** Fescue Bluegrass

N₂O Flux - Fourth Fertilization

FescueBluegrassSoil Moisture

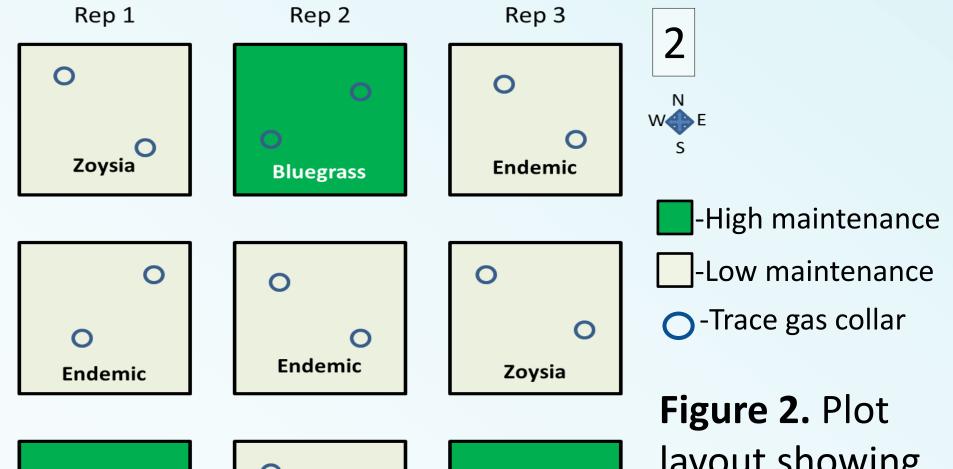
Figure 8. Significant time*treatment difference in CO₂ flux at the end of the summer.

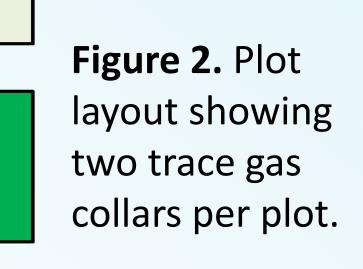
CO₂ Flux - Fourth Fertilization

Figures 10, 11, and **12.** CO₂, N₂O, and NH₃ Flux for October fertilization; red line

Conclusions

- C₁: High maintenance turf generally did not have higher CO₂ and N₂O fluxes (Figures 5 and 6), except when there were extended large differences in soil moisture between the high and low maintenance stands.
- C₂: High maintenance turf did not show any spikes in CO₂, N₂O, or NH₃ in response to fertilization (Figures 10, 11, and 12), which could be due to high levels of plant uptake.


References


- Bartlett, M.D. and I.T. James. 2011. Are golf courses a source or sink of atmospheric carbon dioxide? A modelling approach. Proceedings of the Institution of Mechanical Engineers Part P-Journal of Sports Engineering and Technology 225: 75-83. doi:10.1177/1754337110396014.
- Braun, M., Y. Bai, B. McConkey, R. Farrell, J.T. Romo and D. Pennock. 2013. Greenhouse gas flux in a temperate grassland as affected by landform and disturbance. Landscape Ecol 28: 709-723. doi:10.1007/s10980-013-9878-9.
- Townsend-Small, A. and C.I. Czimczik. 2010. Carbon sequestration and greenhouse gas emissions in urban turf. Geophys. Res. Lett. 37. doi:10.1029/2009gl041675.

Design & Maintenance

- All treatments were moved to 7.6cm when the three replicates average over 10.2cm.
- High maintenance: irrigation, fertilization, and pesticide.
- Low maintenance: no inputs.
- Four Lawn *Maintenance* Types:
 - tall fescue high
 - Kentucky bluegrass high
 - zoysia grass low
 - "endemic" multi-species low
- Plots are 18.28x18.28m with 18.28m of runway between each plot.

Every other week during cool season

February 10 – April 13, 2013

was the largest

Sampling

12 (97.64kg ha⁻¹).

- Every week during warm season
 - May 7 October 9, 2013
- Every day surrounding a fertilization event (4 total) – starting two days before, and continuing every day for ~ 2 weeks

Figure 3. Picture showing the field sampling instruments: INNOVA photoacoustic gas analyzer and flux chamber. Figure 4. Trace gas collars were installed permanently in field, ~2cm above ground and 13cm below ground.