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Soil erodibility is considered as an important factor in soil erosion prediction. In the 

Universal Soil Loss Equation (USLE), the K – erodibility factor is defined as the rate of 

soil loss per unit of the erosion index (EI) from a continuously tilled fallow plot 72.6 ft 

long on a 9% slope (unit plot). A soil erodibility nomograph, which allows rapid estima-

tion of K values for different soils, was developed from both long-term natural runoff 

plots, as well as from rainfall simulation studies. In this study, a combination of lab ex-

periment with WEPP model simulation was used to back-calculate USLE K values. 

Materials and Methods 

Introduction Results and Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

Rill Experiment 

(Mini-Flume) 

Interrill Experiment 

(Rainfall Simulation) 

 

 

Indiana Soil 

(Miami clay loam) 

South Dakota Soil 

(Opal clay ) 

Vermont Soil 

(Vergennes silty clay) 

Dry - Ki 

Saturated - Ki 

Drainage - Ki  

Dry - Kr and τcr  

Saturated - Kr and τcr  

Drainage - Kr and τcr  

Climate Input: 

100 years of 

synthetic weath-

er 

Slope Input: 

72.6 ft. long, 6 ft. 

wide, 9% uni-

form slope 

Soil Input: Soil Tex-

ture; OM; CEC. 

Management Input: 

Fallow, tillage every 

month from April to 

October. 

WEPP Soil Loss 

USLE Soil Erodibility 

The nomograph K for Indiana soil was nearly same as WEPP K and RUSLE2 K, lower 

for South Dakota and Vermont soils. The WEPP K were nearly same as RUSLE2 K for 

Indiana and South Dakota soil, lower for Vermont soil. The dry and saturated K were 

slightly greater and drainage K was lower while compared with RUSLE2 K.  It is a good 

method for estimating USLE K-values especially for the soils from Indiana and South 

Dakota. 
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Figure 3. A comparison of the RUSLE2 K Value and Back-Calculated K-Value  

 

Figure 1. Measured Interrill Erodibilities (Ki) 

Figure 2 Measured Rill Erodibilities (Kr) and Critical shear Stresses (τcr) 

Figures 1&2 show the experiment results for the three soils. The data were input to 

WEPP model to compute long-term average annual soil loss. Then USLE K values 

were back-calculated (Figure 3). 

● Nomograph K for IN soil was nearly same as WEPP K and RUSLE2 K, lower for SD 

and VT soils. 

● WEPP-K was same as RUSLE2 K for IN and SD Soils, lower for VT soil. 

● Dry and saturated K greater and drainage K lower compared with RUSLE2 K. 

● Greatest K resulted from saturated condition and lowest K resulted from drainage 

condition. 
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