Estimation of USLE K-values with a

Process-based Approach

Qiuju Wu¹, Dennis C. Flanagan², Chi-hua Huang², Faqi Wu¹

Introduction

Soil erodibility is considered as an important factor in soil erosion prediction. In the

Results and Discussion

the scientific guidance of Prof. Flanagan and Prof. Huang, and the support of Prof. Wu. I also

thank B. Hofmann and all the staff in USDA – ARS National Soil Erosion Lab. for their technical assistance. The Agricultural & Biological Engineering Department at Purdue Unviersity is also acknowledged for hosting this international scholar.

Figure 3. A comparison of the RUSLE2 K Value and Back-Calculated K-Value

. Nomograph K for IN soil was nearly same as WEPP K and RUSLE2 K, lower for SD and VT soils.

. WEPP-K was same as RUSLE2 K for IN and SD Soils, lower for VT soil.

. Dry and saturated K greater and drainage K lower compared with RUSLE2 K.

. Greatest K resulted from saturated condition and lowest K resulted from drainage condition.

Contact Information

¹College of Resource and Environment, Northwest A&F Univ., Yangling, 712100, China.

orange0916@nwsuaf.edu.cn (Q. Wu), wufaqi@263.net (F. Wu)

²USDA-ARS National Soil Erosion Lab. 275 S. Russell St. W. Lafayette, IN, 47907, USA.

flanagan@purdue.edu (D. Flanagan), chihua@purdue.edu (C. Huang)