Introduction

- *Phytophthora sojae* is an oomycete pathogen of soybean (*Glycine max*) causing ~$300 M in crop losses annually in the US.¹
- Management of *P. sojae* is through race-specific and/or quantitative (partial) resistance.
- Race-specific resistance (conferred by *Rps*-genes) exhibits a gene-for-gene relationship with the pathogen (Fig. 1).
- In contrast, partial resistance is generally controlled by many genes of small effect.
- Due to the diversity & rapid evolution of *P. sojae* populations, partial resistance is theoretically more durable than race-specific resistance.
- South Korea has been proposed as the origin of the soybean-*P. sojae* pathosystem. Thus, soybean lines from S. Korea may possess high levels of resistance².

Objectives

Evaluate partial resistance to *Phytophthora sojae* in three populations:

1. 293 breeding lines and cultivars from the OSU breeding program.
2. 91 historically popular North American cultivars
3. 1,392 Plant Introductions from South Korea

Materials and Methods

1. Screen to select virulent & aggressive *Phytophthora sojae* isolates
 - a. Hypocotyl test
 - b. Tray test³
2. Conduct layer test* on 1,776 lines from three populations (see objectives).
3. Collect data: Root rot score, plant height, root & shoot weight.
4. Extract genotypic Best Linear Unbiased Predictors (BLUP) values.

FIGURE 1: Example of gene-for-gene resistance.

Resistance occurs only when *Rps* and *Avr* alleles are present in plant & pathogen

FIGURE 2: Partial resistance exhibits a quantitative distribution

Distribution of root rot score (C2S1 isolate, all lines)

FIGURE 3: Box-plot of root rot score BLUP values for each population.

OSU breeding lines have the lowest root rot scores (most resistant).

Results

Root rot score is quantitatively distributed & skewed right. Fig. 2 shows the excess of lines with root rot scores < 2 for inoculation with isolate C2S1 in the first set of inoculations. This indicates possible race-specific resistance to C2S1. Lines with low root rot scores were labeled as “Group 2” and inoculated with a different isolate in the second set of inoculations.

TABLE 1: Pearson’s correlation between BLUP values.

<table>
<thead>
<tr>
<th></th>
<th>Root Rot Score</th>
<th>Plant Height</th>
<th>Root Weight</th>
<th>Shoot Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Rot Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lower left: correlation coefficient.
Upper right: significance of correlation (p-value).

The four traits are all significantly correlated with each other in group 1 & group 2.

TABLE 2: Genetic variance of each trait.

<table>
<thead>
<tr>
<th></th>
<th>INOCULATED</th>
<th>NON-INOCULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Rot Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot Weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3: Extreme resistant and susceptible soybean lines.

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (C2S1 isolate)</th>
<th>Group 2 (C251 & Henry isolates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank(of 1,044)</td>
<td>Line</td>
<td>Root Rot Score</td>
</tr>
<tr>
<td>1</td>
<td>M09-W148</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>PI 424309 A</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>M11-M055</td>
<td>1.5</td>
</tr>
<tr>
<td>1042</td>
<td>PI 398686</td>
<td>9</td>
</tr>
<tr>
<td>1043</td>
<td>PI 398659</td>
<td>9</td>
</tr>
</tbody>
</table>

High levels of resistance are found mainly in the OSU population with some in the South Korean population.

*Based on root rot score BLUP values

Conclusions & Future Work

- High levels of partial resistance exist in OSU & South Korean germplasm.
- Significant genetic variation and moderate levels of heritability indicate selection for improved resistance is feasible.
- Phenotypic & genotypic data will be combined for association mapping and studies on genomic selection.

References

Acknowledgements

- Assistance with phenotypic assays: Colleagues and students from the McHale Lab, Dorrance Lab, Lab James, Brandon Overstreet, Josh Abahazi, Lisa Sulton, Sarah Lewis, Allen Homerlaw, Adam Rine
- Funding: OARDC CAPS
- Used at USDA-ARS Soybean Genomics and Improvement Laboratory, Oxford, Ohio, and the OARDC Plant Pathology Laboratory, Wooster, Ohio
- Used at USDA-ARS Soybean Genomics and Improvement Laboratory, Oxford, Ohio, and the OARDC Plant Pathology Laboratory, Wooster, Ohio

*Department of Horticulture and Crop science, The Ohio State University, Columbus, OH
²Department of Plant Pathology, The Ohio State University, Columbus, OH