Maine Potato Farms: Remotely-Sensed Cropping System Dynamics and Applied Econometrics Sherri DeFauw^{1†}, Aaron Hoshide², Patrick English³, Andrew Plant⁴, Stephan Goetz¹, John Halloran⁵ and Bob Larkin⁵ ¹ Pennsylvania State University, Dept of Agricultural Economics, Sociology & Education, University Park PA[†] ²University of Maine, School of Economics, Orono ME ³Mississippi State University, Delta Research & Extension Center, Stoneville MS ⁴University of Maine Cooperative Extension, Houlton ME ⁵USDA-ARS, Orono ME

INTRODUCTION Sustainability of Maine's potato production systems has been of major concern for at least the past 50 years. A key historical challenge is the identification of profitable rotation crops. Geospatial interdependencies of cropping systems as well as intensities of key enterprises linked to farm sizes are often overlooked components of agricultural sustainability. We have developed a remotelysensed framework for bridging the gap between agronomic and econometric modeling families to evaluate fine-scale systems-level dynamics and farming community-based economic geography The objectives of this investigation were to: (1) profile potato cropping systems for three sentinel counties in Maine (Aroostook, Penobscot and Oxford) using Cropland Data Layer (CDL, 2008-2012), National Agricultural Imagery Program (NAIP, 2009 and 2011), Common Land Unit (CLU), soils (SSURGO), and PRISM climate (1981-2010) datasets; (2) assess dominant crop sequences and geospatial relationships of remotely-sensed enterprises; and (3) evaluate potential economic impacts of select alternate crops across 5 years using 3 potato farm model sizes.

RESULTS Geospatial integration of classified imagery, soils and CLUs revealed a 5year potato systems footprint estimated at 63,000 ha; 87% of production soils were considered potentially highly erodible or highly erodible land. Close to 95% of Maine potato production occurs in 3 counties; potato-small grain sequences dominate Aroostook, whereas tightly-coupled potato-corn rotations characterize Penobscot and Oxford counties. Potato varied from 23,000-24,000 ha detected per annum. Other crops generating positive net farm income (NFI) included broccoli (15% of potato land base), soybean, alfalfa, corn silage and canola (Table 1). Crop intensities for potato, corn and broccoli as well as their spatial interdependencies are summarized by county (Figs 5-16). Select outcomes for crop sequences detected on small, medium and large farms of Oxford County are summarized here in the form of a profitability map (Fig 17).

Figure 1. Five-year production footprints for Figure 2. Five-year production footprint for Figure 3. Five-year production footprints for Figure 4. Five-year production footprints for potato (derived from 2008-2012 CDLs) was indicator crops (detected in CDL time series indicator crops (detected in CDL time series indicator crops (detected in CDLs); key crops 2008-2012) overlain on 30-year average (w/ code(s)) include broccoli (214), corn (001), used to extract dominant crop sequences. 2008-2012) overlain on 30-year average annual precipitation grid (PRISM climate maximum temperature grid (PRISM climate potato (043), small grains (5 codes tracked), dataset 1981-2010). Precipitation values are dataset 1981-2010). Temperature values are soybean (005), & forages - alfalfa (036), 'other hay' (037). in inches. in degrees F.

MATERIALS and METHODS Georeferenced data for cropland/land use patterns (based on CDL/NLCD codes), farmland delineations (CLU), RGB and color infra-red (CIR) imagery (NAIP), soils, and PRISM climate datasets were integrated in a GIS (Figs 1-4). Key indicator crops extracted from 2008-2012 CDLs included broccoli, corn, soybean, forages (alfalfa and 'other hay'), potato and an assemblage of small grains. A 5-year potato production footprint was constructed from the CDL time series. CLU datasets were aggregated and recoded; geometric frequency distribution of hectarage was used to resolve farmscape groupings; the standard distance function (ArcGIS v10) was used to calculate field dispersion for each group. Farmland delineations (CLUs) were used to constrain and partially correct remotely-sensed crop recognition errors. Implementation of a decision tree algorithm further improved "stray" pixel capture and removal from farm fields. Available NAIP images (2009, 2011) were classified and compared with CDL-derived versions of field-scale activities detected. Representative enterprise and whole-farm budgets were constructed for the 5 farm-size classes resolved. Net farm income (NFI) was calculated in Excel spreadsheets for individual crop enterprises (top 12 detected) and whole-farm scenarios to examine economies of scale. Methodological details for 3-year crop sequences are in DeFauw et al. (2012).

raw data) overlain on corn revealing interdependencies.

Figure 15. Five-year production footprint for potato (CDL

Figure 16. Five-year production footprint for potato (CDL raw data shown) geoprocessed to reveal crop intensity.

CONCLUDING REMARKS Sustainable intensification of key cropping systems hinges on the identification of profitable rotation crops that result in yield optimization to improve financial outcomes for farms in Maine. Economic models for farms \leq 120 ha are still being refined considering that many grow tablestock and seed potato rather than for processing; plus, these smaller farm-holders have expanded time horizons for equipment. Development of an interactive, user-friendly, web-based version of these geospatial agronomic-econometric models is also underway to further resolve farming communities, farm-guild associations, and their productive capacity throughout Maine. REFERENCES **DeFauw** SL, RP Larkin, PJ English, JM Halloran and AK Hoshide. 2012. Geospatial evaluations of potato production systems in Maine. Am J Potato Res DOI: 10.1007/s12230-012-9271-2 (6 October 2012)

Table 1. Net farm income (NFI) ha⁻¹ for row and forage crop enterprises (listed by production scale) for Maine

raw data shown) geoprocessed to reveal crop intensity.

Figure 6. Five-year production footprint for Fig. 5. Spatial interdependencies for key crops in Aroostook potato in Aroostook County (2008-2012 County. Raw values (CDLs) CDLs - raw data shown) geoprocessed to rounded to nearest 1000 ha. reveal crop intensity.

Figure 7. Five-year production footprint for broccoli overlain on potato (CDL raw data shown) geoprocessed to reveal crop intensity. All values rounded to the nearest hundred (ha).

Figure 8. Five-year production footprints for potato and small grains (CDL raw data shown) for Aroostook County display an exceptionally high degree of spatial interdependency.

ACKNOWLEDGEMENTS Two of the co-authors (SLD and SJG) gratefully acknowledge funding from the USDA's National Institute of Food and Agriculture (NIFA) under grant no. 2011-68004-30057. Scott A. Samson (Geosystems Research Institute, Mississippi State University) supplied timely advice; Lindsay Hodgman and Tara King (USDA, NRCS - Bangor, ME) are kindly thanked for their assistance with SSURGO-related concerns. + SLD manages an agricultural consulting service in Mississippi.