

Interactions of Biochar with Establishment of Legume-Rhizobia Symbiosis

Deirdre E. Griffin, Kate M. Scow, Sanjai J. Parikh, Charlotte Oriol University of California, Davis Department of Land, Air, and Water Resources

Introduction

- * Legume roots exude aromatic flavonoid signaling compounds that induce *nod* genes in *Rhizobium* spp.
- * Nod gene activation initiates rhizobial infection of legume root hairs causing nodulation and establishment of symbiosis.

Could biochar interfere with this process?

- * Biochar can interfere with allelopathic flavonoids.^{1,2}
- * Biochar can disrupt signaling between bacterial colonies.3
- * Activated carbon can decrease rhizobial nodulation and mycorrhizal colonization.4,5,6
- * Biochar is used for remediation of PAH contaminants, which have similar log K_{OW} values to flavonoids (~2.5 – 4).^{1,7}
- * Biochar can decrease the efficacy of aromatic herbicides by 4 times.¹

We hypothesize that biochar can disrupt signaling by sorbing flavonoids, reducing establishment of legume-rhizobia symbiosis.

Objectives

- * To determine if amendment of walnut shell (WS) biochar to soils will reduce nodulation of legumes by rhizobia.
- * To assess whether biochar will affect symbiosis establishment differently based on the texture of the soil.

Materials and Methods

Materials:

- * Walnut shell biochar—produced at 900°C, pH of 9.7, SA of 221.7 m² g⁻¹
- * Yolo silt loam soil—14% clay, 51% silt, 35% sand
- Sterile sand

Experimental Setup:

- * Cowpeas (Vigna unguiculata L.) grown in a greenhouse experiment; seed inoculated with pea rhizobia inoculum.
- * RCBD with 5 blocks, 1 treatment replicate per block
- * 5 x 2 factorial treatments:

- * Pots kept at a moisture content of 60% WHC
- * Watered daily—soil with DI H,O only, sand with DI H₂O and with Hoagland solution 2x per week

Analyses:

* Plants harvested 33 days after seeding

method and biochar liming potential

- * Plant health assessments and soil samples collected at harvest
- * Roots washed and nodules per plant counted
- * Nodules removed; nodule, shoot, and root dry weights determined

Results

There were significant soil-treatment interactions for nodule number (p=0.02) and total plant biomass (p=0.03). Therefore, treatment effects were analyzed separately for each soil.

Figures 1-4. Bars represent the mean ± SE (n = 5, except for silt loam lime 10 g kg⁻¹ equivalent and sand control where n=4). Treatments not sharing a letter are significantly different (Tukey Means Comparison tests, p < 0.05).

Change in pH over growth period

Figure. 5. Final pH – Initial pH. Initial pH values based on incubations (n=3). Final pH values determined from samples collected at harvest (n=5).

Soil texture and biochar effects

Paired t-tests showed non-significant effects of soil texture on nodule number at both the 10 g kg⁻¹ biochar rate (p= 0.4251) and 25 g kg⁻¹ biochar rate (p= 0.3747).

Conclusions

- * Biochar significantly reduced nodulation when applied to the sand at a rate of 25 g kg⁻¹.
- * Nodule numbers were reduced in 10 g kg⁻¹ biochar treatments in both soils and in the 25 g kg⁻¹ in silt loam soil, but these results were not significant.
- * The texture of the soil medium did not impact the effects of biochar at either rate.
- * pH decreased over time in the highest nodulating treatments.

Next Steps

- * Batch sorption experiments using synthetic daidzein and genistein, flavonoids exuded by cowpea, to determine the relative affinities for soils and biochar for these compounds.
- * Repeat of greenhouse experiment with pH monitoring throughout growing period.

Acknowledgments

Henry A. Jastro Graduate Research Award UCD & Humanities Graduate Research Award Soils & Biogeochemistry Graduate Group Fellowship Scow Soil Microbiology & Parikh Soil Chemistry Labs Dr. Fungai Mukome for biochar characterization data

Contact: degriffin@ucdavis.edu

References

1. Beesely et al., *Environ Poll* **159**:3269 (2011); 2. Lehmann et al., Soil Biol & Biochem 43:1812 (2011); 3. Masiello et al., Environ Sci Technol 47(20):11496 (2013); 4. Wurst and van Beersum, *Plant Soil* **314:**1 (2009); 5. Wurst et al., *Plant Ecol* **211**:19 (2010); 6. Warnock et al., *Plant Soil* **300**:9 (2007); 7. Shaw and Hooker, *Soil Biol & Biochem* **40**:528 (2008);