Investigation of biochar and pig slurry effects on aggregate stability as an index of soil erosion using X-ray computed tomography

Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé, Postbox 50, DK 8830 Tiele, Denmark, Ataalah.khademalrasoul@agrsci.dk,PhD student

2011

5 kg BC m⁴

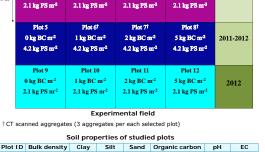
Introduction

Sustainable land use and management is one of the main challenge all over the world > Biochar is a carbon-rich compound with high porosity produced by the pyrolysis process of biomass. Biochar application into the soil can be an approach to improve soil properties.

Objectives

> Investigation the effects of biochar in different doses on stability, clay dispersibility and strength of soil aggregates

> Evaluation the aging effects of biochar on soil aggregates


Materials and Methods

>Study site: Kalundborg, Denmark

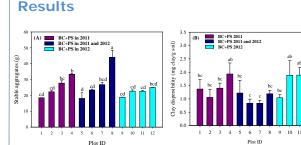
>Experimental field with 12 plots with different applications of biochar (BC) and pig slurry (PS)

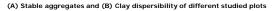
>Measured parameters

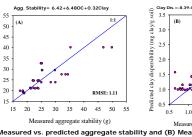
- \succ Aggregate stability
- > Clay dispersibility
- > Tensile strength (TS)
- \succ Specific rupture energy (SRE)
- > X-ray CT scanning of 18 selected aggregates

2 kg BC m

Plot 1

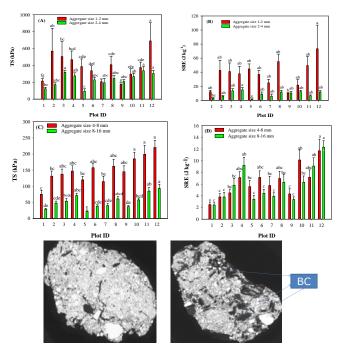

0 kg BC m


6 m


Plot 2

1 kg BC m

Plot I D	Bulk density	Clay	Silt	Sand	Organic carbon	рН	EC
-	g cm-3	%				-	(µS/cm)
1	1.21	8.0	22.5	69.5	1.59	6.48	43.0
2	1.31	9.4	24.3	66.3	1.81	6.63	40.5
3	1.34	10.0	25.4	64.6	2.19	6.70	45.5
4	1.24	10.9	26.5	62.5	2.71	6.33	44.5
5	1.28	8.6	22.0	69.4	1.64	6.56	48.0
6	1.11	8.7	22.0	69.2	2.37	6.69	47.0
7	1.14	8.4	23.8	67.7	3.14	6.57	45.0
8	1.09	8.9	22.2	68.9	4.76	6.83	47.5
9	1.31	8.6	23.9	67.6	1.48	6.68	52.5
10	1.35	10.0	26.6	63.5	1.74	6.73	43.5
11	1.37	11.3	27.1	61.5	2.25	6.98	48.0
12	1.24	11.0	26.9	62.1	3.50	6.72	44.0



3.0 1.0 15 2.0 2.5 3.5 Measured clay dispersibility (mg clay/g soil) (A) Measured vs. predicted aggregate stability and (B) Measured vs. predicted clay dispersibility of different studied plots

PMSE- 0 284

Poster No. 2834

X-ray CT gray images of soil aggregates (plot 3 (left) and plot 8 (right))

Conclusions

 \succ Plots having the highest application of biochar and pig slurry showed the highest aggregate stability and lowest clay dispersibility.

> The increase in biochar and pig slurry applications led to increase in TS (kPa) and SRE (J kg⁻¹) for large size aggregates (4-8 and 8-16 mm), whereas for small aggregates (1-2 and 2-4 mm) the effect was less pronounced.

> Based on CT scanning, the aggregates with large amount of biochar led to enhance in TS and SRE ($R^2 = 0.6$, P < 0.001).

> Our results indicate, that the biochar application has a positive affect on aggregates physical and mechanical properties. This can be used to improve and sustain an overall high soil quality.

Acknowledgements

The Helmholtz Center for Environmental Research (Halle Germany) to handle the CT scanning of soil aggregates is gratefully acknowledged

60

stability (

45

40

35

30

25 20

