PHOSPHORUS SORPTION AND MOVEMENT IN FINE SAND SPODOSOLS AND ENTISOLS

Davie M. Kadyampakeni¹, Peter Nkedi-Kizza², Kelly T. Morgan¹, and Arnold W. Schumann³ ¹University of Florida, Southwest Florida Research and Education Center, SR 29 N, Immokalee, FL 34142, USA. ²University of Florida, Soil and Water Science Department, 2181 McCarty Hall, P.O. Box 2169, Gainesville, FL32611. ³University of Florida, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850.

Introduction

Phosphorus is a critical nutrient in citrus production whose deficiency or excess can affect crop yield and quality.

Sound stewardship and management of P would help growers maintain high yields and conserve environmental quality.

Appropriate estimation of sorption coefficients and characterization of P movement would provide necessary information for sustainable environmental management.

Objectives

1) Determine the effect of supporting electrolyte on P sorption coefficient (K_D).

2) Evaluate the effect of sorption coefficients on prediction of P movement at 30 cm soil depths using HYDRUS-1D.

Batch Sorption Experiments

Sorption isotherms on the disturbed soil samples (0- to 15- and 15- to 30-cm) were determined using the batch equilibration procedure (Graetz and Nair, 2009).

initial fertilizer mixture, the In the concentrations were 10, 50 and 100 mg L⁻¹ N, 5, 25 and 50 mg L⁻¹ P, and 6, 32 and 63 mg L⁻¹ K.

A 10 g air-dried soil subsample was placed in a centrifuge tube and equilibrated with 20 ml of 3 initial concentrations of P.

were calculated using:

1982).

$$K_D = \frac{\int_0^{c_{max}} NK_f C_{max}^{N-1} dC}{\int_0^{c_{max}} dC} = K_f C_{max}^{N-1}$$

maximum concentration at equilibrium (mg L⁻¹).

ults coefficients for P in Immokalee ller fine sand		
	Supporting algotrolyta	
		$n_{\rm D}(L KG')$ 2.87 ± 0.43
		2.07 ± 0.43
	0.01 M KCI	3.79 ± 0.87
	Fertilizer mixture	1.73 ± 0.15
	Fertilizer mixture	2.05 ± 0.89
	0.005 M CaCl ₂	3.46 ± 0.65
	0.005 M CaCl ₂	4.43 ± 0.50
	0.01 M KCI	0.53 ± 0.11
	0.01 M KCI	0.50 ± 0.19
	Fertilizer mixture	0.45 ± 0.10
	Fertilizer mixture	0.43 ± 0.20
	0.005 M CaCl ₂	0.75 ± 0.13
	0.005 M CaClo	0.74 ± 0.32

Discussion and Conclusions

The results show that P adsorption in the top 0-15 cm was greater for Candler than Immokalee sand using the fertilizer mixture, 0.005 M CaCl₂

The sorption coefficients (K_D) for P estimated using 0.01 M KCI were similar to K_D values determined using fertilizer mixture for the two soils.

The K_D values of 0.005 M CaCl₂ as the supporting electrolyte were two- to

The divalent Ca⁺² resulted in overestimation of P sorption on Candler and

References

Bowman, B.T. 1982. Conversion of Freundlich adsorption K values to the mole fraction format and the use of SY values to express relative

Graetz, D.A., and V.D. Nair. 2009. Phosphorus sorption isotherm