Fertilizer-nitrogen management in onion-tropical pumpkin rotation in Puerto Rico

David Sotomayor-Ramírez, Miguel Oliveras, Remy Rodríguez College of Agricultural Sciences, University of Puerto Rico, Mayagüez david.sotomayor@upr.edu

Introduction

Onion (Allium cepa var. cepa L.) and tropical pumpkin (Cucurbita moschata) contribute about 13% of the total gross agricultural
crops in Puerto Rico, estimated at about 554.5 M (2010)
, 5 of Puerto Rico
Sois of the semiaidi-southern coast are $2: 1$ clays hioh CEC . $\mathrm{PH}>7$, 2.35
 Onion is a high cash crop with very shallow root system that is frequenty

Tropical pumkin is expected to have a ded esidual soil N and fertilizer rates are usually low low.
There is no published inrormation that describes the environmental impact of

Objectives
Quantify the effects of three fertilizer-N levels on yields of an onion pumpkin rotation solution inorganic $\mathrm{N}\left(\mathrm{NH}_{4}+\right.$ and $\left.\mathrm{NO}_{3}\right)$

Materials and methods

experiment intitation

 $\begin{array}{lllllllllllllll}0.2 & 0.2 & 50.6 & 18.3 & 0.9 & 0.9 & 0.1 & 0.1 & 1.8 & 3.5 & 0.7 & 0.7 & 0.3 & 1.4 & 0.1\end{array}$

 Mean of 12 plots prior to experiment inititation to a depth of $0-15 \mathrm{~cm}$.
2 - mean (top) and standard deviation (bottom)

Experiment $66554^{\prime} 7 \mathrm{~W}$ W)

Soil preparation: disking, subsoiler, disking and soil harrow
Raised beds (1.82 m distance) with drip irrigation lines
Onion (var. Mercedes) planted at 614,818 plants/ha, Pumpkin (var. Soler) planted 2,990 plants/ha
Experimenta
replicates
-in filie pre-plant) and weekly fertigation
Pumpkin followed onion on the same plots with fertilizer-N rates of: $112(\mathrm{~N}-1), 196$) $\mathrm{kg} \mathrm{N} /$ ha via bi-weekly drip irrigation
N sources were urea, ammonium sulphate (AS) and potassium nitrate (PN), with N
ratios (urea-N:AS-N:PN-N) of $2: 1: 1$ for $N-1,2.7: 17: 1$ for $N-2$ and $3.5: 2.5: 1$ for N
3 , treatments.
Agronomic crop performance indicator and yields were measured
Suction-cup lysimeters installed at 6 and $12^{\prime \prime}$ depths to monitor soil-solution Pest control was followed using farmer's best management practice Soils were sampled pre-plant and post harvest at $0-15,115-30,30-60$, and $60-90$
m for 1 M KCl extractable $\mathrm{NO}_{3}-\mathrm{N}$

Experiment timeline

Results and Discussion

rable 2. Fresh onion yields and size distribution as influenced by fertilizer-N

Fertilizer N rate	Total yield	$\begin{gathered} \text { Total } \\ \text { marketable } \\ \text { yield } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { bulbs } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { marketable } \\ & \text { bulbs } \end{aligned}$	Small	Medium	Large	colos
kg N/ha	---------kg/ha-------			\#/ha			\%-	
Farmer	42,455	36,008	263,803	178,525	9	52	32	0.3
140	37,466a ${ }^{1}$	31,883a	247,165a	159,298	11	55	29	1
196	40,031a	33,276a	294,387a	177,529a	12	61	21	1
253	43,007a	36,498a	295,284a	185,001a	11	54	28	3

- Columns with different letters are significantly different at $p<0.05$ as determined with
- Columns with

Mean onion plant population was 319,417, with 39% and 69% bulb formation at 10 and 11 weeks, respectively
Fertilizer N rate did not affect total onion yield, total marketable yield, total number of fruits, total marketable fruits, and size classification (Table 2) Growers can take a conservative approach to fertilizer- N application for onion production in the Guánica area, in a similar rotation and nutrient management program as the one that was historically used
Pre-plant soil $\mathrm{NO}_{3}-\mathrm{N}(0$ to 30 cm$)$ ranged from 89 to $282 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ and could fertilizer treatment

Table 3. Tropical pumpkin number of fruits and yields as influenced by fertilizer-N
levels.

Fertilizer N rate	Marketable		$\begin{gathered} \text { Non- } \\ \text { marketable } \end{gathered}$	
	Number	Yield	Number	Yield
kg N/ha	fruits/ha	kg/ha	fruits/ha	kg/ha
112	5738a ${ }^{1}$	29274a	520ab	1765a
196	2977b	15126b	933a	3273a
281	8495c	44645 c	325b	1615a

- Columns with different letters are significantly different at $p \leq 0.05$ as determined with
- Highest yields were obtained with $281 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ (Table 3)

Pumpkin marketable yields and number of fruits were highest with $281 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ plots with $196 \mathrm{~kg} \mathrm{~N} /$ ha had an unusually high number of discarded fruit due to

Te Sufficiency levels of nutrients in onion indicator tef 11 wevs

$\begin{array}{llllllllllll}-95 \% & \text { Cl'}^{1} & 47.7 & 2.5 & 38.9 & 13.14 & 5.37 & 11.1 & 191.6 & 38.9 & 28.4 & 19.1 \\ 24.5\end{array}$
$\begin{array}{llllllllllll}95 \% & \mathrm{Cl} & 51.0 & 3.0 & 47.4 & 16.03 & 6.69 & 12.8 & 269.1 & 50.3 & 40.6 & 25.2 \\ 30.5\end{array}$

- 95% confidence intervals

Sufficiency levels of nutrients in onion indicator leaves can be calculated based on lack of response to fertilizer- N (Table 4)

$$
\begin{aligned}
& \text { Fertilize } \\
& \frac{\mathrm{rN} \mathrm{rate}}{} \\
& \mathrm{~kg} / \mathrm{ha}
\end{aligned}
$$

Mean onion vegetative N uptake was $57 \mathrm{~kg} \mathrm{~N} /$ ha and fruit N extraction was 66
$\mathrm{~kg} \mathrm{~N} /$ ha, with no significant difference among treatments (Table 5). $\mathrm{kg} \mathrm{N} / \mathrm{ha}$, with no significant difference among treatments (Table 5). Pumpkin vegetative N uptake ranged from 64 to $91 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ and fruit N
extraction ranged from 155 to $188 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$, and was highest for $281 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ treatment
Pre-plant profile $(0$ to 100 cm$) \mathrm{NO}_{3}-\mathrm{N}$ was $>200 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$, and in spite of this,
there was crop response to fertilizer- N
Table 6 . Economic analysis of N fertilization for onion and pumpkin production.

Fertilizer N	Fertilizer-N cost	Difference in cost	Gross profit	Value/Cost
$\mathrm{kg} \mathrm{N} / \mathrm{ha}$	\$/ha	\$/ha	\$/ha	\$crop/s fert-N
140	1,080		18,289	
196	1,225	145	18,416	0.9
253	1,363	284 -Tropical pumpkin	20,459	7.7
112	740		10,308	
196	958	219	5,326	-23.4
281	1,179	439	15,720	12.7

Fertilizer represents 5.3 to 6.7% of estimated production costs in onion ($\$ 20,248$) and 14.9 to 23.8% in pumpkin ($\$ 4,960$) (Table 6)
In onion, for every $\$$ invested above $140 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ there is a benefit of $\$ 0.9$ and $\$ 7.7$ for 196 and $252 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$
Ind pumpkin, for every $\$$ invested above $112 \mathrm{~kg} \mathrm{~N} /$ ha there is a benefit of $-\$ 23$ isease incidence $281 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$, respectively.
Disease incidence
ha treatment.
Figure 1. Soil solution inorganic N and electrical conductivity at two depths (6 and 12 inches) during three fertigation events with 140 (N1) and $265 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ (N3) treatments.

Each fertigation event delivered $14.8 \mathrm{~kg} \mathrm{N/ha}\left(13.2 \mathrm{lb} \mathrm{N} / \mathrm{accre}^{2}\right.$ for $\mathrm{N}-1$ and 28.8 kg
$\mathrm{N} / \mathrm{ha}(25.7 \mathrm{lb} \mathrm{N} /$ acre) for $\mathrm{N}-3$ fertilizer treatments.
 fertigation everts. This sugg
even days after fertigation.
Mean inorganic N concentrations were 66.8 and $60.0 \mathrm{mg} \mathrm{N} / \mathrm{L}$ for $\mathrm{N}-1$ and $\mathrm{N}-3$
fertigation treatments, resper
ely (6 in depth).
Figure 2. Partial soil and crop N budget for onion-tropical pumpkin rotaion.
Residual soil inorganic N after pumpkin has not been analyzed.

There was a higher surplus soil inorganic N in $\mathrm{N}-3$ treatment which was concentrated in the top 30 cm .
In spite of the imp. In spite of the improvement in agronomic yield, the high residual soi
environmental impact may warrant fertilization at the lower N rates.

