

Sao Paulo

Water, Food, Energy & Innovation for a Sustainable World ASA, CSSA, & SSSA International Annual Meetings With the Canadian Society of Agronomy and International Society for Terrain-Vehicle Systems

Nov. 3-6, 2013 | Tampa, Florida

Center for Nuclear Energy in Agriculture

Can Corn Leaves Uptake Ammonia Volatilized From Urea Applied On the Soil Surface?

Evandro Luiz Schoninger¹, Lucas Peres Miachon², Hugo Gonzalez Villalba², Paulo Cesar Ocheuze Trivelin¹

1 - Stable Isotopes Laboratory, CENA/University of Sao Paulo, Piracicaba - SP, Brazil. E-mail: <u>schoningerel@cena.usp.br</u> 2 - Soil Science Department, ESALQ/University of Sao Paulo, Piracicaba - SP, Brazil

INTRODUCTION

Plants are able to uptake ammonia from the atmosphere through the leaves and can partially recover the N volatilized from urea applied on the soil surface. This study aimed to evaluate foliar uptake of ammonia derived from sidedressing urea application at different corn growth stages.

MATERIAL AND METHODS

Corn

Piracicaba, State of Sao Paulo Growing Seasons: 2011/12 and 2012/13 **Randomized blocks with four** replications

RESULTS

The percentage of volatilized N ranged from 23 to 68% of the applied, and these differences can be related to weather conditions. In both growing seasons, the values of nitrogen absorbed by leaves were 3.4, 5.5, 6.2, 9.0, and 14.8% for V4, V6, V8, V10 and V12, respectively, and approximately 89% of N absorbed was accumulated in the leaves and only 11% in the stalks. There was high correlation between leaf area and percentage of N absorbed by leaves (r = 0.93, $p \le 0.01$), because the leaf area is the contact surface of the plant with ammonia in the atmosphere, supporting the hypothesis that the greater leaf area reflects a greater foliar absorption of ammonia.

Treatments:

Sidedressing urea (labeled at 12 atoms % ¹⁵N) application at V4, V6, V8, V10 and V12 growth stages

- Urea application on trays containing soil (140 kg ha⁻¹ of N)
- Leaf area (LA) of plants was measured at each time of urea application

- Soil into trays was dried and analyzed for total N content and ¹⁵N abundance
- 16 plants near tray were collected, dried and analyzed for total Ν

content and ¹⁵N abundance

Corn leaves absorb part of the volatilized ammonia from urea

applied on the soil surface, reaching values of 15%. The percentage of ammonia absorbed is directly related to corn leaf area.

N volatilized (%) = $(^{15}N \text{ applied} - ^{15}N \text{ recovered in the soil}) / ^{15}N \text{ applied x 100}$

