Simulation of Post Anthesis Drought Effect on Sorghum Using Chemical Desiccants

Patrick O. Ongom and Gebisa Ejeta

Department of Agronomy, Purdue University

Introduction

Post anthesis Drought, is a major stress in sorghum production around the world. Field evaluation of breeding materials against terminal drought is challenging partly because of inappropriate techniques for imposing drought stress. Post anthesis drought stress could be mimicked by disrupting current photosynthesis through leaf sprays with desiccants (Nicolas and Turner1993). This approach would allow evaluation of breeding materials under optimal environments.

Goal of the study

To elucidate the suitability of using chemical desiccants in screening post anthesis drought in sorghum.

Specifically;

- Evaluate genotypic response to desiccation stress
- Quantify yield reduction dues to desiccation stress
- Assess relationship between yield and stress tolerance
- Asses efficacy of different desiccants in imposing post-anthesis stress

Materials and methods

Testing efficacy of Desiccants

- Chemicals: KI, NaCIO3 and KCIO3,
- Rates: (0.4%, 0.6% and 1%)W/V
- Used 3genotypes, 3replications, 2years

Testing genotype sensitivity to KI stress

- Two experimental sets: one sprayed with KI (0.6%W/V) and a control
- Laid as RCBD, 2 replications
- Used 18 diverse genotypes
- Sprayed 14 days after flowering

Measured parameters

 Grain yield, 100 seed weight, stress tolerance index (STI), stem dry matter.

Results

Table 1. Genotype response to KI stress

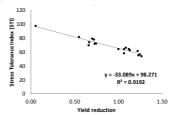

		Mean squares			
Source	d.f	SWt(g)	GY(g/plt)	RE(%)	STI(%)
Rep	1	0.01	9.7	45.5	32.0
Entry	17	0.3***	58.7***	397**	246.7***
Error	17	0.035	11.38	114.6	
Total	35				
SWt =seed weight; GY = grain yield; RE= remobilization efficiency					
STI = Stres	ss Tole	erance Index			

Table 2. Grain yield reduction due to KI stress

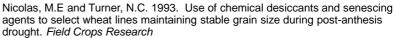
Entry	Stressed	Control	Difference	
AG2102	12.52	36.30	23.78***	
B35	19.66	34.37	14.70***	
HD1	17.38	40.76	23.38***	

•				
P898012	15.28	17.64	2.36 ^{ns}	
TX623B	16.64	35.56	18.92***	
TX7078	7.12	33.46	26.34***	
XG3103	11.10	32.35	21.25***	
Mean	17.22	39.56	22.34	
Paired t-tes	t		11.64***	

Figure 1. Relation between yield and stress tolerance

Table 3. Desiccants efficacy in imposing stress

		MS		
Source	d.f	Seed wt(g)	Yield(g/plt)	
Rep	2	0.07	0.01	
Trt comb	26	0.7***	0.2***	
Genotypes	2	7.8***	2.1***	
Chem	2	0.8***	0.2***	
Dose	2	0.04	0.01	
GenxChem	4	0.2***	0.04**	
GenxDose	4	0.02	0.02	
ChemxDose	4	0.05	0.02	
GenxChemxDose	8	0.01	0.01	
Residual	52	0.03	0.01	
Total	80			


Table4. Mean comparison of 3 different desiccants

Yield (g/plant)					
Genotypes	KClO ₃	KI	NaClO ₃	Mean	
P89001	31.90	32.71	28.63	31.08 c	
P898012	22.18	27.17	18.92	22.76 b	
TX7078	10.82	11.04	6.14	9.33 a	
Mean	21.63 b	23.64 b	17.90 a		

Conclusion

These preliminary results demonstrated the possibility of using Desiccants for post anthesis stress evaluation in sorghum

Reference

