

1. Introduction

- The inland Pacific Northwest is one of the few wheat belts in the world that does not commonly have oilseeds in rotation.
- Current high global prices have stimulated the demand for a local canola industry. However, agronomic knowledge is still lacking in our region.
- Conflicting studies indicate that net N mineralization can either increase or decrease when following canola relative to cereal crops (Engstrom, 2010; Soon and Arshad, 2002).
- Understanding decomposition and N mineralization is critical for residue and fertility management within a crop rotation that includes canola under zerotillage.
- Interactions between N fertility and biochemistry in the decomposition and N release/retention of various crops requires further study, ultimately to determine whether more or less fertilizer N is needed following canola.

2. Materials and methods

Residue Characterization

a. NMR and elemental analysis

- Bruker DRX 400 ¹⁵N CP/MAS solid state NMR • 25,000 scans
- Varian Vx 400 1H NMR
 - 10:1 (w/v) D₂O extraction, 30 min sonication
 - 256 scans
- Residue TC/TN and NH_4^+/NO_3^- and Dissolved organic C and N (<.45 μ)
- b. Proximate fiber analysis
 - ANKOM 200 sequential fiber digestion (www.ankom.com)
 - Neutral detergent fiber (NDF)
 - Acid detergent fiber (ADF)
 - Acid detergent lignin (ADL)
 - Fractionation: Step-wise mass and TC/TN determination
 - Mostly soluble mass, C, and N = Total NDF
 - Mostly hemicellulose mass, C, and N = NDF ADF
 - Mostly cellulose mass, C, and N = ADF-ADL
 - Mostly lignin mass, C, and N = ADL

Experiments

c. Residue decomposition

- 1.5 g of residue incubated in 15 g of acid-washed and heat sterilized quartz sand
- 2.5 ml of microbial solution (1:10 (w/v) extraction of agriculturally important Palouse, Ritzville, Ralston, Prosser, and Broadax soils
- 2.5 ml of Hoagland solution containing 250 ppm N
- Destructive sampling for mass loss (weight difference) at 0, 1, 2, 4, 6, 8, 12, 16 weeks
- TC/TN determination of residues at 16 weeks to calculate C and N loss • Projected 16 wk net N mineralization = $(\Delta C^*(1 \text{ g N}/25 \text{ g C})) - \Delta N$

d. Weekly CO₂ evolution rates

- 4 g/kg of residue in a Palouse silt loam previously cropped in canola
- GRACEnet protocol for gas sampling at 0, 2, 4, and 6 hour deployments following capping samples within Mason jars fitted with septa
- Weekly sampling from rates at 1, 2, 3, 4, and 6 weeks
- CO₂ measured with a GC-2014 Shimadzu GC

e. Net N-mineralization

- Destructive sampling for NH₄⁺-N and NO₃⁻-N in a Palouse soil amended with 4 g/kg of residue at 0, 1, 2, 4, 6, 8, 12, and 16 weeks.
- Net N mineralization relative = net change in inorganic N of treated soils – net change in inorganic N of non-treated control soil at week 16 and summed over all weeks

*ANOVA proc mixed Tukey's test, p = 0.05

4. Discussion and conclusion

- Pea and canola residue had a higher proportion of soluble components (3a). Most residue N was easily soluble and not bound up in structural carbohydrates (3b), particularly for pea and canola (NMR spectra). DON and NDF soluble N was strongly related to the total N content of the residues ($R^2 = 0.97$ and 0.99).
- Over a 16 week incubation, mass and C losses were mostly similar among the residues (3c), despite differences in biochemistry.
- Within the first 4 weeks, the average CO₂ mineralization rate was strongly correlated to the readily available fraction of C that was NDF soluble (3d).
- N dynamics were largely explained by differences in TN, DON, and NDF soluble N. More net N immobilization was measured (3e) than predicted based on C and N loss in the idealized decomposition study, most likely due to the effects of soil organic matter. Residues with C:N ratios above 25:1 did not differ in their net N immobilization potential, suggesting similarities in quality. However, further research needs to consider the interactive effects of residue quantity and quality on N cycling.

5. Acknowledgements

- Engstrom, L. 2010. Nitrogen dynamics in crop sequences with winter oilseed rape and winter wheat. PhD dissertation. Swedish University of Agricultural Sciences. Soon, Y.K. and Arshad, M.A. 2002. Comparison of the decomposition and N and P mineralization of canola, pea, and
- wheat residues. Biology and Fertility of Soils. 36: 10-17.
- Funding: NSF IGERT Award 0903714, WA Biofuel Cropping Systems Project 3016, USDA NIFA Award #2011-68002-30191 Special thanks to Dr. Ann Kennedy, Tami Stubbs, Dr. Bill Hiscox, Dr. Greg Helms, and Sara Humphries for technical support.

Author contact email: tai.mcclellan@wsu.edu

—Pea (21:1) —Canola (51:1) —Pea (58:1) -Canola (73:1) —Wheat (70:1) Wheat (78:1) Canola (79:1) —Wheat (168:1) -Control

namics		Net N mineralization		
		Total	wk 16	Projected
		mg N/kg		
	—Pea (21:1)	- 0.13 a*	3.0a*	43.8
	—Canola (51:1)	- 18.5 a	-14.5ab	-8.4
	—Pea (58:1)	-14.2a	-13.8ab	-10.5
	—Canola (73:1)	-23.0a	-20.4b	-14.2
	—Wheat (70:1)	-23.9a	-24.3b	-14.4
	—Wheat (78:1)	-35.1a	-24.3b	-8.7
	- Canola (79:1)	-36.8a	-26.3b	-12.0
	—Wheat (168:1)	-25.7a	-26.0b	-21.6
	—Control	*ANOVA proc mixed Tukey's test, p = 0.05		
16				