

Assessing Bacterial and Fungal Contribution to N₂O

Production in Soils under Different Tillage Practices

Shiva Ladan and Pierre-Andre Jacinthe

Department of Earth Sciences, Indiana University Purdue University Indianapolis (IUPUI)

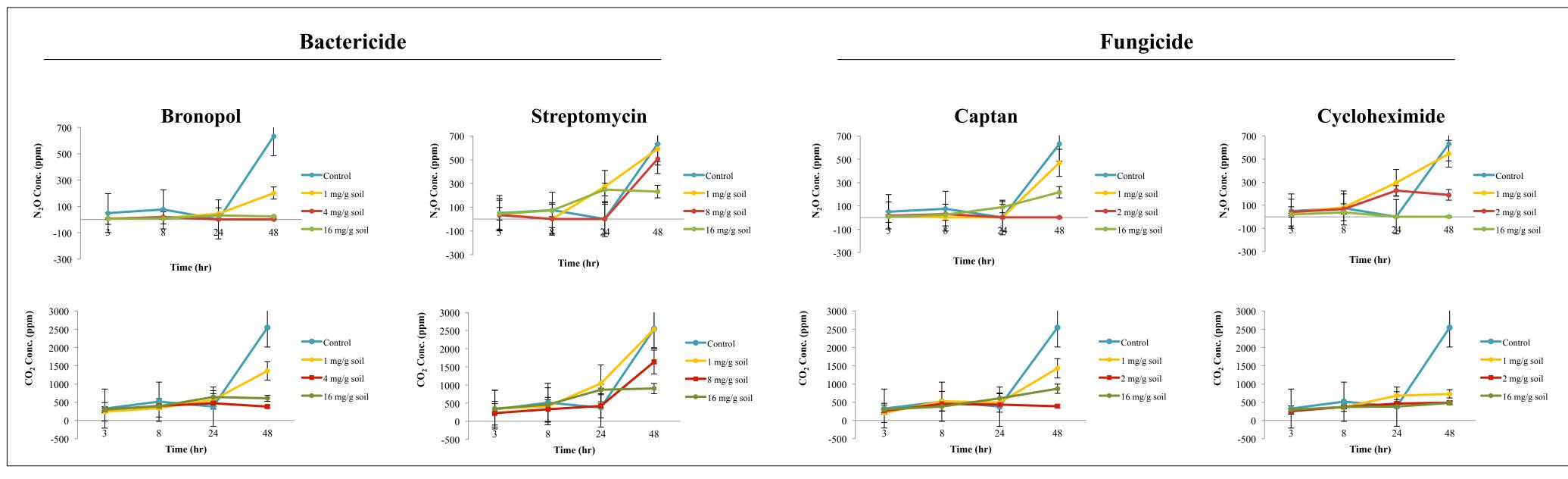
Contact: shladan@iupui.edu

Background

- Nitrous oxide (N_2O) is an atmospheric constituent implicated in the accelerated greenhouse effect and stratospheric ozone depletion.

N₂O and CO₂ production

To identify the type, concentration and mode of application of biocides that result in the strongest inhibition of denitrification activity.


- Among anthropogenic activities, agriculture is the largest contributor (about 69 %) to N_2O emission.
- The biological processes of nitrification and denitrification are the primary pathways of N_2O production in soil ecosystems.
- During the last several decades, no-till (NT) farming has been widely adopted as an alternative tillage practice to conventional plow till (PT)
- There are mixed results about the net effect of NT practice on N_2O emission, and the contributing soil factors are not well elucidated.
- Through its impact on soil biophysical conditions, NT farming could change the fungal :bacterial ratio of soils.
- Standard methods are needed to quantify the contribution of fungi and bacteria to N_2O production in agricultural soils.

Objectives

- Identify the types and concentration of biocides (fungicide and bactericide) that provide optimum inhibition of denitrification in agricultural soils.
- Determine the relative contribution of fungi and bacteria to denitrification in soils under various forms of land-use and tillage practices.

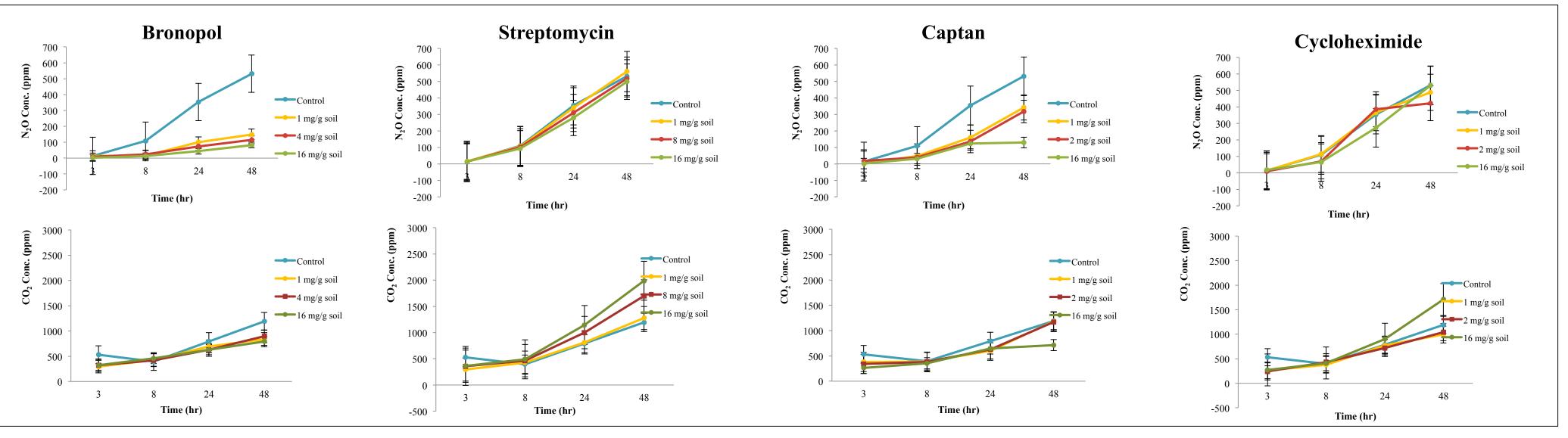

Materials and Methods

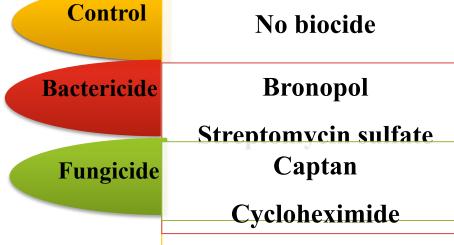
Fig 1. Experiment 1 (Media and biocides added simultaneously)

Results

Fig 2. Experiment 2 (Media added 1 hour after biocides addition)

Soil Samples (0-10 cm)

S. Charleston (OH): Plow till (PT1), No-till (NT), Woodlot (WL) Danville Farm (IN): Plow till (PT2) Starkey Farm (IN): Plow till (PT3)


Selective Inhibition (SI) of Denitrification

Field-moist sieved soil samples were left overnight at room temperature (22 °C) for acclimation. Soil samples (10 g of PT1 soil) were placed in serum bottles (250 mL) and amended as follows:

- Denitrification enzyme activity (DEA) media: 100 mg NO₃-N kg⁻¹, and 40 mg dextrose-C kg⁻¹.

- Biocides addition either concurrently with DEA media (Exp 1) or 1 hour before DEA media (Exp 2).

- The following biocides were evaluated:

Biocides were applied at concentrations ranging between 1 and 16 mg g⁻¹ soil. Each treatment was tested in triplicate.

Serum bottles were evacuated and flushed with UHP N_2 at least 3 times, injected with C₂H₂ (10 kPa), and incubated (25 °C). Gas samples were taken from bottles headspace after 3, 8, 24 and 48 hours. Concentration of N₂O was measured by gas chromatography (electron capture detector,

Results showed that: (i) time of media addition had no significant effect on N₂O and CO₂ production, (ii) streptomycin was the least effective biocide, often resulting in stimulation of N₂O and CO₂ production, (iii) bronopol and captan (both at 16 mg g⁻¹ soil) had the strongest inhibitory effect in the production of both gases. Therefore, these biocides were selected for subsequent assays conducted with the other soils (Tables 1 and 2).

Table 1. Percent inhibition of N₂O and CO₂ production in different soils amended with **bronopol** (16 mg g^{-1} soil)

Soil	N ₂ O Production Inhibition %	CO ₂ Production Inhibition %
PT1	88.8	75.9
PT2	84.4	57.0
PT3	84.7	34.5
NT	65.8	76.4
WL	40.6	5.1

Table 2. Percent inhibition of N₂O and CO₂ production in different soils amended with **captan** (16 mg g^{-1} soil)

Soil	N ₂ O Production Inhibition %	CO ₂ Production Inhibition %
PT1	71.5	76.0
PT2	67.4	62.0
PT3	56.6	53.3
NT	57.2	80.7
WL	30.0	53.8

In the soils tested, bronopol caused greater inhibition in N₂O production compared to captan. These results suggest a greater contribution of bacteria than fungi to N₂O production. CO₂ production, however was more strongly inhibited by captan than by bronopol.

Future Directions

ECD).

Funding provided through USDA-National Research Initiative (NRI) grant 2009 35112-05213. Laboratory assistance of Austin Taylor is gratefully acknowledged.

• The amount of N_2O and CO_2 production was not affected by the time of media addition.

• Among the biocides evaluated in this study, streptomycin was the least effective, whereas bronopol and captan were the most effective inhibitors of both N₂O and CO₂ production.

• Since greater inhibition in N₂O production was achieved with bronopol than with captan, results suggest greater contribution of bacteria than fungi to N₂O production in soils investigated

• Additional experiments, using soils from different regions, management practices, and incubated at different moisture levels will be conducted to expand the range of application of the method.

• Additional experiments will also be conducted with ^{15}N -labeled NO₃ to improve the internal validity of the method, and address limitations of the acetylene (C_2H_2) block technique.