

Introduction

Objectives

- soil samples from a coarse sandy field.
- measurements.
- To models.

Sampling

1. Top layer (0-20 cm)

2. 88 sampling points in a 15 x 15 m Grid Particle size analysis on bulk soil Sieving sizes:

			,
Mean	SD (%)	Min	Мах
0.043	9.3	0.037	0.052
0.049	10.2	0.040	0.060
0.908	0.55	0.878	0.919
0.908	0.6	0.878	0.919
158.1	11	105.7	187.1
547.5	6	467.6	638.0
0.031	0.13	0.024	0.043
0.466	4	0.405	0.513
0.30	10	0.20	0.37
0.074	5	0.027	0.101
0.47	36	0.13	1.07
	Mean0.0430.0490.9080.908158.1547.50.0310.4660.300.740.47	MeanSD (%)0.0439.30.04910.20.9080.550.9080.6158.111547.560.0310.130.46640.30100.07450.4736	MeanSD (%)Min0.0439.30.0370.04910.20.0400.9080.550.8780.9080.60.878158.111105.7547.56467.60.0310.130.0240.46640.4050.30100.200.07450.0270.47360.13

cm H_2O) on 100 cm³ soil cores

Gas Diffusion-Derived Tortuosity Governs Saturated Hydraulic Conductivity of Sandy Soils Federico Masís Meléndez (1,2), P. Moldrup (3), T.K.K. Chamindu Deepagoda (1), Markus Tuller (4) and L.W. de Jonge (1) (1)Dept. of Agroecology, Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Denmark. (2)Costa Rica Institute of Technology, Cartago 30101, Costa Rica (3) Dept. of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark. (4) Dept. of Soil, Water and Environmental Science, University of Arizona, 1177 E. 4th Street, Tucson, AZ 85721-0011, USA. $A(pF) = A_{\max}$

AALBORG UNIVERSITY

Danish Research Council for Technology and Production Sciences. Costarrican Ministry of Science and Technology and the National Council for Scientific and Technological Research

(sponsorship to the first author).

UID: 83542

Translocation

