Predicting the Soil Water Characteristic from Near Saturated to Hyper-Dry based on Volumetric Soil Size Fractions

Dan Karup Jensen (1), P. Moldrup (2), M. Tuller (3), M. Naveed (1), and L.W. de Jonge (1)

(1) Dept. of Agroecology, Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Denmark.
(2) Dept. of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark.
(3) Dept. of Soil, Water \& Environmental Sciences, The University of Arizona, 1177 E. $4^{\text {th }}$ Street, Tucson, AZ 85721, USA.

Introduction

Knowledge of the soil water characteristic (SWC) is needed in many soil water related studies.
Existing proxy SWC-models works within specific soil texture classifications.
Until recently has the hyper-dry part of the SWC been difficult to measure accurately and the hyperdry region is therefore excluded in SWC-models.

Objectives

To develop an easy applicable model to estimate the full SWC based on easy to measure soil data (eg. texture, organic carbon, and bulk density). The prediction needs to be applicable for all soil texture classifications from coarse to fine textured soils.
The model should be simple and easy to use.

Methods

Soils

21 Arizonian reference source soils

Textures from coarse sand to clay

Organic carbon from 0-4\%

Bulk Soil Analysis

Texture, organic carbon, particle density

Soil-Moisture Measurements

Tempe cells
WP4-T Dewpoint Potentiameter

Results of Measurements
 Soil water characteristics

Model Development

Prediction of the SWC - Wet-region

Capillarity is controlling

$$
\begin{array}{ll}
\text { Volumetric texture fractions } \\
\rightarrow \text { Pore size fractions } & \theta=\phi\left(1-\left(V_{C S}+\beta_{1} \cdot V_{F S}+\beta_{2} \cdot V_{S}\right) \cdot \alpha\right) \\
\end{array}
$$

Volumetric water content

Prediction of the SWC - Dry-region

Adsorption is controlling
Specific surface area
\rightarrow Highly related to clay content

Model Performance Soil water characteristic curves

Measured vs. estimated water content

Conclusions

- This study presents a simple two-region model to estimate the full SWC from near saturation to dry
- Volumetric particle size fractions were found to describe the soil water characteristic very accurately for a wide range of textural soil classes.
- Clay was found to be highly correlated with the hyper-dry water content and can be used as a parameter to estimate the hyper-dry water contents in the range from pF4.2 to pF6.9

Perspectives

- Test and evaluate the concept on undisturbed samples.

Acknowledgements

Soil Infrastructure, Interfaces, and Translocation Processes in Inner Space (Soil-it-is) project from the Danish Research Council for Technology and Production Sciences.

AARHUS
UNIVERSITY
DEPARTMENT OF AGROECOLOGY

