

How many test locations and replications are needed in crop variety trials for a target region?

Weikai Yan*

Eastern Cereal & Oilseed Research Centre, AAFC, Ottawa, ON K1A 0C6

Introduction

- Crop variety trials are essential for plant breeders to select and for agronomists to recommend crop cultivars to growers.
- How many test locations and replications are needed in crop variety trials are questions everyone conducting variety trials has to ask.
- The purpose of this work was to develop simple formulas for estimating the optimum number of replicates within a trial and the optimum number of test locations for a target region.

The optimum number of replications within a trial

- The effectiveness of variety trials is measured by the heritability achieved in them. The solution for the optimum numbers residues in the definitions of heritability.
- The heritability within a trial is determined by (DeLacy et al, 1996):
- $\Rightarrow H = \frac{\sigma_g^2}{\sigma_g^2 + \frac{\sigma_e^2}{N_r}},$
- where H is the heritability of the trial for the trait of interest, σ_g^2 is the genotypic variance, σ_{ϵ}^2 the error variance, and N_r the number of replicates in the trial. This formula can be written as:

$$\bullet N_{\rm r} = \left(\frac{\sigma_{\rm \epsilon}^2}{\sigma_{\rm g}^2}\right) \frac{{\rm H}}{1-{\rm H}} = Q_r \frac{{\rm H}}{1-{\rm H}}$$

- The relationships between Nr and H is depicted in Figure 1. The increase in the number of replications N can effectively improve H only when H is smaller than certain level, say H = 0.75, beyond which the effect gradually diminishes.
- Assuming H = 0.75 is the target trial heritability, the number of replicates needed is determined by

$$\blacktriangleright N_{r,H=0.75} = 3 \left(\frac{\sigma_{\epsilon}^2}{\sigma_{g}^2}\right) \frac{H}{1-H} = 3Q_r \quad [1]$$

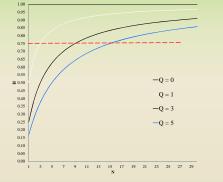
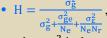



Fig. 1. Relationship between trial heritability (H) and number of replications at different trial noise levels (Q)

The optimum number of test locations for a target region

• Likewise, the heritability at multilocation trial level is defined as:

- where σ_g^2 is the genotypic variance, σ_{ϵ}^2 the experimental error variance, σ_{ge}^2 the genotype-by-location interaction variance, N_e the number of test locations, and N_r the number of replicates within trials. This equation can be written as:
- $N_e = \left[\frac{\sigma_{ge}^2 + \sigma_{\epsilon}^2/N_r}{\sigma_g^2}\right] \frac{H}{1-H}$.
- Given the relationship between H and N_e (Fig. 1), the number of test locations needed to achieve H = 0.75 may be considered as the optimum number of test locations for a target region and can be determined by
- $N_{e,H=0.75} = 3 \left[\frac{\sigma_{ge}^2 + \sigma_{\epsilon}^2 / N_r}{\sigma_g^2} \right] = 3 Q_e$
- Assuming each trial is properly replicated this formula can be simplified to:

[2]

•
$$N_{e,H=0.75} = 1 + 3 \left(\frac{\sigma_{ge}^2}{\sigma_g^2} \right)$$

Case study

Table 1. Number of replicates used (N) and number of replicates needed to achieve a heritability of 0.75 (N_H75) estimated using Eq. [1] for different traits in the oat registration trials at Ottawa, Ontario from 2008 to 2012.

					1000-	
		Days to	Plant	Test		
Year	of Reps	heading	Height	weight	weight	yield
2008	Ν	4.0	4.0	3.9	3.9	4.0
	N_H75	4.0	2.1	1.7	1.5	1.4
2009	N	2.0	4.0	4.0	4.0	4.0
	N_H75	2.5	1.4	2.3	1.6	4.1
2010	N			4.8	4.8	4.8
	N_H75			1.8	1.3	1.8
2011	Ν	6.0	6.0	6.0	5.9	5.9
	N_H75	1.4	2.6	1.5	2.1	2.4
2012	Ν	6.0	6.0			6.0
	N_H75	2.2	3.0			3.1
	Ν	4.5	5.0	4.7	4.7	5.0
Mean	N_H75	2.5	2.3	1.8	1.6	2.6

Table 2 Number of test locations used (N) and number of test locations needed to achieve an H = 0.75 (N_H75) estimated using Eq. [2] for oat grain yield within each of two mega-environments in eastern Canada.

Year			
1041	Locations	environment	environment
2006	N	4.0	5.0
2000	N_H75	7.6	5.1
	N	4.0	6.0
2007	N_H75	6.2	2.3
	N	5.0	8.0
2008	N_H75	4.8	6.6
	N	5.0	5.0
2009	N_H75	10.1	5.6
	Ν	5.0	5.0
	N_H75	27.7	8.8
2011	Ν	4.0	4.0
2011	N_H75	18.3	6.5
	N	3.0	4.0
2012	N_H75	9.0	4.5
Mean	Ν	4.3	5.3
wiean	N_H75	12.0	5.6

References

DeLacy, I.H., K.E. Basford, M. Cooper, J.K. Bull, and C.

G. McLaren. 1996. Analysis of multi-environment trials – A historical perspective. In: Cooper, M., and Hammer, G.L. , editors, Plant adaptation and crop improvement. CAB International, Wallingford, UK, p.39–124. Yan, W. 2014. Crop Variety Trails: Data Management and Analysis. Wiley-Blackwell.

Yan, W. J. Frégeau-Reid, R. Martin, D. Pageau, and J. Mitchell-Fetch. 2014. Euphytica, DOI 10.1007/s10681-014-1253-7