Dryland Soil Carbon and Nitrogen after Thirty Years of Tillage and Cropping Sequence

Upendra Sainju, Brett Allen, and TheCan Caesar-TonThat, USDA-ARS, Sidney, Montana, and Andrew Lenssen, Iowa State University

Figure 1.

2013.

Introduction

• Increased conservation of soil C and N through improved management practices are needed to enhance C sequestration for C trading, reduce the rate of N fertilization and N losses through leaching, denitrification, and volatilization, and mitigate the emissions of greenhouse gases (CO_2 , N_2O , and CH_4) from agroecosystems.

Objectives

- Evaluate the 30-yr influence of tillage and cropping sequence combination on crop biomass (stems + leaves) returned to the soil and soil organic C (SOC), inorganic C (SIC), total N (STN), NH₄-N, and NO₃-N
- Soil C and N storage have been reduced by 30 to 50% of their original contents in the last 50 to 100 yr using traditional farming systems, such as conventional tillage with crop-fallow in the northern Great Plains.
- Limited information exists on the long-term (30 yr) effects of management practices on soil C and N conservation.
- Quantify C and N sequestration rates, and

Fallow

• Examine if soil total C (STC) can be used to estimate SOC in dryland cropping systems where SIC contents are higher than in irrigated cropping systems

Pea

Wheat

• NTCW = No-till continuous spring wheat

Barley

- STCW = Spring till continuous spring wheat
- FSTCW = Fall and spring till continuous spring wheat
- FSTW-B/P = Fall and spring till spring wheat-barley (1984-1999), followed by spring wheat-pea (2000-2013)
- STW-F = Spring till spring wheat-fallow (traditional system)

Soil sampling

Design: Randomized complete block with four replications Location: Froid, Montana Duration: 1984-2013

• Mean annualized crop biomass yield was lower in STW-F Results than the other treatments (Fig. 1).

Regression coefficients for the relationships between Table 1. soil organic C (SOC) and total N (STN) at the 0-7.5 cm depth with year as affected by tillage and cropping sequence combination for Figs. 3 and 5B.

Conventional till

Treatments

No-till

- The SOC and SIC at 0-7.5 cm was greater in STCW than the other treatments, except NTCW (*Fig. 2*). The SIC at 90-120 cm was also greater in NTCW and STCW than the other treatments.
- The SOC at 0-7.5 cm decreased linearly with year from 1984 to 2003 (*Fig. 3*). The rate of decrease was 99 to 130 kg C ha-¹ yr-¹ lower in STCW and NTCW than STW-F (*Table 1*).
- The SOC and STC at 0-120 cm were linearly related (Fig. 4).
- The STN at 0-7.5 and 15-30 cm was also greater in STCW and NTCW than the other treatments (*Fig. 5A*).
- As with SOC, STN also declined with year (*Fig. 5B*). The rate of decline was 8 to 19 kg N ha-¹yr-¹ lower with NTCW and STCW than the other treatments (*Table 1*).
- Soil NH₄-N content at 0-7.5 cm was greater in STCW and FSTCW than the other treatments (*Fig. 6*).
- Soil NO₃-N content at 0-7.5, 7.5-15, and 90-120 cm was usually greater in FSTCW than the other treatments (*Fig 6*).

Discussion & Conclusions

• Reduced soil disturbance and greater amount of crop residue returned to the soil increased C and N storage and lowered their rate of decline in NTCW and STCW than STW-F at the surface layer.

Tillage and	Regression coefficients for SOC			
sequence	a†	b‡	R ²	Р
NTCW	16.2	-0.133	0.78	0.11
STCW	16.3	-0.104	0.98	0.07
FSTCW	15.9	-0.151	0.83	0.09
FSTW-B/P	16.2	-0.214	0.99	0.04
STW-F	14.6	-0.203	0.67	0.18
	Regression coefficients for STN			
NTCW	1.74	-0.016	0.96	0.01
STCW	1.69	-0.005	0.12	0.78
FSTCW	1.71	-0.020	0.95	0.02
FSTW-B/P	1.71	-0.026	0.88	0.22
STW-F	1.58	-0.024	0.65	0.20

[†] Intercept (Units are Mg C ha⁻¹ for SOC and Mg N ha⁻¹ for STN). [±] Slope (Units are Mg C ha⁻¹ yr⁻¹ for SOC and Mg N ha⁻¹ yr⁻¹ for STN).

Relationship between soil total C (STC) and organic C (SOC) at the 0-120 cm depth.

■ 90-120 cm = 60-90 cm ■ 30-60 cm ■ 15-30 cm ■ 7.5-15 cm ■ 0-7.5 cm

• Soil total C can be used to predict SOC in dryland cropping systems which can reduce the time and cost of soil analysis.

- Increased tillage intensity increased soil available N (NH₄-N and NO_3 -N contents).
- Improved management practices, such as reduced tillage with continuous nonlegume cropping, can sequester C at 99 to 130 kg C ha-¹ yr-¹ and N at 8 to 19 kg N ha-¹ yr-¹ in the surface layer compared with the traditional conventional tillage with crop fallow in dryland cropping systems in the northern Great Plains.

(A) Soil total N (STN) content at the 0-120 cm depth as influenced by 30 yr of tillage and

cropping sequence combination. **(B)** Relationship between STN at the 0-7.5 cm depth and year as influenced by tillage and cropping sequence combination.

Soil NH_4 -N and NO_3 -N contents at the 0-120 cm Figure 6. depth as influenced by 30 yr of tillage and cropping sequence combination.

> U.S. Department of Agriculture **Agricultural Research Service**

