

Screening Upland rice Genotypes for Zinc Use Efficiency

<u>Adriano Stephan Nascente¹, Nand Kumar Fageria¹</u>

¹ Brazilian Agricultural Research Corporation (EMBRAPA), National Rice and Bean Research Center, GO-462 Road, km 12, P.O. Box 179, 75375-000, Santo Antônio de Goiás, State of Goiás, Brazil (<u>adriano.nascente@embrapa.br</u>)

INTRODUCTION

Soils of the Cerrado region are mostly Oxisols and Ultisols.

Zinc deficiency is Brazilan Oxisol is widely reported in annual crops like upland and lowland rice, corn and wheat (Fageria and Baligar, 1997; Fageria and Zimmermann, 1998; Fageria, 2001; Fageria, 2009).

The main region of Zn deficiency in these soils is low natural level of zinc and use of lime which increases soil pH and consequently Zn uptake (Fageria et al. 2002). Genotypic variation in Zn use efficiency in crop plants is widely reported in annual crops (Graham, 2008; Fageria and Stone, 2008; Fageria et al. 2008a). Use of Zn efficient genotypes is an important strategy in correcting this nutrition disorder in crop plants. **The objective of this study** was to evaluate Zn use efficiency of 20 upland rice genotypes.

METODS

A greenhouse experiment was conducted at the National Rice and Bean Research Center of EMBRAPA, Santo Antônio de Goiás, GO, Brazil.

The Zn treatment used were 0 mg kg⁻¹ (natural level of the soil) and 20 mg kg⁻¹ of soil using zinc sulfate with 23% of Zn. The genotypes tested were: BRA 01506, BRA 01596, BRA 01600, BRA 02535, BRA 02601, BRA 032033, BRA 032039, BRA 032048, BRA 032051, BRA 042094, BRA 042156, BRA 042160, BRA 052015, BRA 052023, BRA 052033, BRA 052034, BRA 052045, BRA 052053, BRS Primavera and BRS Sertaneja.

RESULTS

Table 1. Plant height and straw dry weight of 20 upland rice genotypes as influenced by Zn fertilization

Fig. 1. Growth of upland rice genotype BRA01506 without (left) and with (right) zinc fertilization.

Fig. 2. Growth of genotype BRA02601 at low (left) and high (right) zinc levels

Genotype	Plant height (cm)	Shoot dry weight (g plant ⁻¹)		
	· · · · · ·	Zn ₀	Zn ₂₀	
BRA 01506	115abcde	9.64ab	12.15abcd	
BRA01596	108cdefg	7.57b	10.34bcdef	
BRA01600	118abcd	8.92ab	13.11abc	
BRA02535	124ab	11.03ab	16.11a	
BRA02601	99fg	8.66ab	13.31abc	
BRA032033	102efg	9.85ab	14.23ab	
BRA032039	104efg	9.58ab	12.82abc	
BRA032048	107cdefg	8.38ab	10.81bcdef	
BRA032051	119abc	8.59ab	10.42bcdef	
BRA042094	119abc	10.70ab	11.41bcdef	
BRA042156	127a	9.61ab	9.23cdef	
BRA042160	126a	11.85a	11.85bcde	
BRA052015	112bcdef	8.55ab	9.47cdef	
BRA052023	105defg	11.68a	10.34bcdef	
BRA052033	98g	10.79ab	7.96ef	
BRA052034	103efg	9.71ab	9.12cdef	
BRA052045	104efg	11.15ab	12.02abcde	
BRA052053	125ab	9.60ab	7.57f	
BRS Primavera	123ab	9.83ab	8.31def	
BRS Sertaneja	112bcdef	11.55a	10.33bcdef	
Average	112	9.86a	11.04a	
F-Test				
Zn level (Zn)	NS	NS		
Genotype (G)	**	**		
Zn X G	NS	**		
CVZn (%)	8.10	31.95		
CVG (%)	5.57	10.07		

Fig. 3. Panicle number at low(left) and high (right) zinc levels in genotype BRA025535

**, NSSignificant at th 1% probability level and not significant, respectively. Means followed by the same letter in the same column are not significantly different at 5% probability level. Means of the average values are compared at low and high Zn levels.

Table 2. Grain y fertilization	vield and panicle	number of 20 up	land genotypes as i	nfluenced by zinc
Genotype	Grain yield (g plant ⁻¹		Panicle number (plant ⁻¹)	
	Zn ₀	Zn ₂₀	Zn ₀	Zn_{20}
BRA01506	7.81def	13.51a	3.66ab	5.33abc

CONCLUSIONS

Upland rice is an important crop in South American cropping systems. Brazil is largest producer of upland rice. Zinc is one of the most yield limiting micronutrients in annual crop production in highly weathered tropical Oxisols. Use of nutrient efficient plant species or genotypes within specie sis an important strategy in reducing cost of crop production and also adverse effects of chemical fertilization on environment. Results of this study show that there is significant differences among upland rice genotypes in Zn use efficiency. The Zn X genotype interactions were significant for most of the yield and yield attributing characters, suggesting variation in upland rice genotypes responses to Zn fertilization and selection of Zn efficient genotypes is an important decision in Brazilian Oxisol.

DIGIOUO	7.01001	10.010	0.00u0	0.00000				
BRA01596	9.47abcd	12.70ab	4.00ab	5.66abc				
BRA01600	7.66ef	11.46abc	3.66ab	4.66abc				
BRA02535	7.92def	10.61abcdef	4.33ab	6.33ab				
BRA02601	7.88def	10.92abcd	4.33ab	6.33ab				
BRA032033	7.94def	11.74abc	4.66ab	7.00a				
BRA032039	7.76def	12.07abc	4.00ab	6.00abc				
BRA032048	8.03cdef	9.83bcdefg	3.66ab	6.00abc				
BRA032051	7.89def	10.11bcdef	4.00ab	4.00bc				
BRA042094	7.39f	6.98g	3.33b	4.66abc				
BRA042156	9.73abc	11.45abc	3.33b	3.66bc				
BRA042160	8.71bcdef	10.49abcdef	4.00ab	4.00bc				
BRA052015	9.21abcde	9.98abcdefg	3.66ab	3.66bc				
BRA052023	8.08cdef	7.95defg	5.00ab	4.00bc				
BRA052033	10.32ab	7.69efg	5.66a	4.33abc				
BRA052034	7.54ef	7.88defg	4.33ab	5.33abc				
BRA052045	7.29f	7.56fg	5.33ab	6.00abc				
BRA052053	10.35ab	10.66abcde	3.66ab	3.33c				
BRS Primavera	10.83a	10.10bcdef	4.00ab	3.66bc				
BRS Sertaneja	9.91ab	9.53cdefg	3.66ab	4.00bc				
Average	8.58b	10.16a	4.11b	4.90a				
F-Test								
Zn level (Zn)	**		*					
Genotype (G)	**		**					
Zn X G	**		**					
CVZn (%)	13.94		27.68					
CVG (%)	8.21		17.46					
*,** C' = 1 C' = 1 + 1 + 5 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1								

***Significant at the 5 and 1% probability level, respectively. Means followed by the same letter in the same column are not significantly different at 5% probability level. Means of the average values are compared at low and high Zn levels.

Acknowledgments To FAPEG for financial suport.

