

Measuring potassium uptake and growth response of annual ryegrass at multiple K rates in K-fixing and non-K-fixing soils

INTRODUCTION

The fixation of potassium in non-exchangeable forms has been identified as a source of concern for soil fertility management in parts of the San Joaquin Valley of central California. The potential for K fixation in these soils has been linked to vermiculite in the silt and fine sand fraction of granitic alluvium¹. Applying K to K-fixing soils at rates equivalent to measured K fixation potential values resulted in much of the K being removed from ammonium acetateexchangeable K (XK) pool within 24 hours, but without satiating the K-fixing capacity of the soils². Increasing K additions resulted in increasing quantities of K fixed.

The sodium tetraphenylboron method of K extraction

G.L. Rees, G.S. Pettygrove, and R.J. Southard Department of Land, Air & Water Resources, University of California, Davis

Fig. 2. Visual K deficiency symptoms in annual ryegrass grown in soil VSS E 100-120 with no K added nine weeks after germination. (3rd clipping)

200 800

K uptake

TPB-K+

added K

(mg/kg)

XK +

added k

(mg/kg)

0 100 1000	1000 1000
0 400 1000	1000 4000

added K

11 1

METHODS

Soils

• Soil samples used from six pedons at two depths each from vineyard and almond orchard sites from across the San Joaquin Valley

• Soil properties are shown in Table 1.

Pot experiment

- 1kg soil plus 1kg washed quartz sand mixed with soluble and control release N and P sources, plus K treatments
- K rates of 0, 50, 250, and 1000 mg/kg soil applied as K₂SO₄, with four replicates for each soil/K rate treatment
- Annual ryegrass (*Lolium multiflorum*) seeded at 1.5 g per pot and grown in greenhouse
- Grass harvested by clipping at 1 cm above the soil surface at 3, 6, and 9 weeks after germination

(TPB-K), developed by Scott et al.³ and refined by Cox et al.⁴ has been shown to extract more K than traditional methods, including some nonexchangeable K, and has been used as an estimate of plant-available K, given its superior correlation to plant uptake⁵.

In an attempt to evaluate the various methods for determining the K status of both K-fixing and non-Kfixing soils, we conducted a greenhouse pot experiment in twelve diverse soil materials and at four rates of applied K. Annual ryegrass (*Lolium multiflorum*), which is highly efficient at recovering soil K⁶, was grown. Yield and K uptake were measured, and results were compared to laboratory measurements of soil K properties.

Table 1. Soil properties

		Depth	XK	TPB-K	TotK	Kfix
Code	Soil/Classification	(cm)		- (m	g kg ⁻¹) -	
VSS E	San Joaquin silt loam	0-20	79	189	2100	241
	Abruptic Durixeralf	100-120	95	183	3950	632
DH 2	Guard clay loam	0-20	194	553	2820	58
	Duric Haplaquoll	40-60	116	234	2810	420
KTR A	Columbia sandy loam	0-20	167	770	4500	-26
	Aquic Xerofluvent	40-60	88	300	3940	243
DON A	Archerdale clay loam	0-20	269	558	4000	-70
	Pachic Haploxeroll	40-60	159	234	2840	225
RM X	Redding gravelly loam	0-20	87	130	830	-45
	Abruptic Durixeralf	40-60	40	66	880	14
DOUG	Vina fine sandy loam	0-20	301	395	1430	-186
	Pachic Haploxeroll	40-60	144	155	740	-60

Fig. 1. Total yield by K rate for each of the 12 soil materials used. For each soil, letters indicate significantly different means at the 5% probability level as determined by the Tukey HSD method.

	(mg/kg)	
Fig. 3. Scatterplot matrix		
comparison of yield and K uptake t laboratory measurements of soil K	o status.	TotK + added K (mg/kg)

Oven-dry above ground biomass ("yield") and tissue K measured

Laboratory analysis:

- Ammonium acetate-extractable K⁷ (XK)
- 2.5-3 g soil saturated and extracted overnight with 1 M NH₄OAc (pH 7) using a mechanical vacuum extractor
- K determined by flame emission spectrometry

<u>K fixation potential⁸ (Kfix)</u>

- 3 g soil shaken in 30 mL of 2 mM KCl for 1 h
- Extracted for 30 minutes with 10 mL 4 M NH₄Cl, and centrifuged
- K measured by flame emission spectrometry
- K fixation potential was calculated as the difference between a blank and the measured K solution concentrations

Sodium tetraphenylboron-extractable K⁴ (TPB-K)

- 1 g soil extracted for 5 minutes with 3 mL of extracting solution (0.2 M NaTPB + 1.7 M NaCl + 0.01 M EDTA)
- Quenched with 25 mL of 0.5 M $NH_4Cl + 0.11 M CuCl_2$
- Samples heated to boiling for 30-45 minutes to dissolve precipitate
- K measured by flame emission spectrometry

<u>Aqua regia "total K"⁹ (TotK)</u>

- 0.500 g ball-milled soil digested with aqua regia for 3 hours at 110°C
- Diluted with 2% nitric acid, filtered, and brought to 250 mL with DI
- K measured by flame emission spectrometry

Table 2. Ryegrass K uptake

		K rate (mg/kg soil)					
Pedon	Depth	0	50	250	1000		
Code	(cm)	Total uptake (mg/kg soil)					
VSS E	0-20	239	304	590	1069		
VSS E	100-120	340	374	587	747		
DH 2	0-20	558	633	810	957		
DH 2	40-60	153	145	348	689		
KTR A	0-20	662	679	907	1042		
KTR A	40-60	369	452	648	961		
	0-20	681	774	895	959		

Fig. 4. Yield by clipping for soils (a) VSS E 100-120cm, (b) VSS E 0-20cm, and (c) DH 2 0-20cm. For each clipping, letters indicate significantly different means at the 5% probability level by the Tukey HSD method. Photos show no K and 1000 mg/kg soil K treatments for soil VSS E 100-120 cm at the time of the first and third clippings. The high rate lead to greater initial growth, but this was reversed by the final clipping.

REFERENCES

- 1. Murashkina, M.A., R.J. Southard, and G.S. Pettygrove. 2007. Silt and fine sand fractions dominate K fixation in soils derived from granitic alluvium of the San Joaquin Valley, California. Geoderma 141: 283-293.
- 2. Rees, G.L., G.S. Pettygrove, and R.J. Southard. 2013. Estimating plant-available potassium in potassium-fixing soils. Comm. in Soil Sci. and Plant Anal. 44:741-748.
- 3. Scott, A.D., R. R. Hunziker, and J.J. Hanway. 1960. Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron. I. Preliminary experiments. Soil Sci. Soc. of Am. Proc. 24: 46-51.
- 4. Cox, A.E., B.C. Joern, and C.B. Roth. 1996. Nonexchangeable ammonium and potassium determination in some Midwestern soils using a dmodifies sodium tetrapheylboron method. Soil Sci. Soc. Am. J. 60:114-120.
- 5. Cox A.E., B.C. Joern, S.M. Brouder, and D. Gao. 1999. Plant-available potassium assessment with a modified sodium tetraphenylboron method. Soil Sci. Soc. Am. J. 63: 902-911.
- 6. Binet, P., L. el Guessabi, and J. Salette. 1984. The potassium status of soils: significance of the "Italian ryegrass test". Fertilizer Research 5: 393-402.
- 7. Soil Survey Staff. 2004. Soil Survey Laboratory Methods Manual Soil Survey Investigations Report No. 42. Version 4.0. USDA-NRCS. Lincoln, NE.

Tissue K¹⁰

- Oven-dry grass ground to 40 mesh
- Extracted for 30 minutes with 2% acetic acid
- K measured by flame emission spectrometry

DISCUSSION & SUMMARY

 Cate-Nelson analysis (carried out in R)¹¹ established critical values for each soil K determination
 -XK: 167 mg/kg soil
 -TPB-K: 419 mg/kg soil
 -TotK: 1663 mg/kg soil

- 2. The TPB-K critical value best predicted presence or absence of a significant response to additional K, and TPB-K plus added K best correlated with K uptake (Fig. 3)
- 3. Soils with initial TPB-K values > 419 mg/kg did not respond to added K, with mixed responses for lower TPB-K soils
- 4. High K fixation potential of DH 2 40-60cm expressed in significant response to 1000 mg K/kg soil treatment relative to 250 mg K/kg soil, but high K fixing VSS E 100-120 showed no significant response to any level of K application

						8. Murashkina, M., R. J. Southard, and G. S. Pettygrove. 2007. Potassium fixation in San Joaquin Valley soils derived from granitic and nongranitic alluvium. Soil Sci. Soc. Am. J.	
DON A	40-60	287	333	519	831	71:125-132.	
RM X	0-20	154	183	435	1043	9. Rajashekhar Rao, B.K., J. Bailey, and R.W. Wingwafi. 2011. Comparison of three digestion methods for total soil potassium estimation in soils of Papua New Guinea derived from varying parent materials. Comm. in Soil Sci. and Plant Anal. 42:1259-1265.	5. Slowly available fixed K not measured by XK or TPB-K method in USS F 100-120 may have provided K source for low K treatments
RM X	40-60	60	126	359	970	10.Miller, R.O. 1998. Extractable chloride, nitrate, orthophosphate, potassium, and sulfate-sulfur in plant tissue: 2% acetic acid extraction. p. 115-118. In Y.P. Kalra (ed.) Handbook of Reference Methods for Plant Analysis. CRC Press, Boca Raton, FL.	evidenced by increased uptake and yield in final clipping relative to
DOUG	0-20	324	383	550	791	11.Mangiafico, S.S. 2013. Cate-Nelson Analysis for Bivariate Data Using R-project. Journal of Extension 51: Article #5TOT1. URL http://www.joe.org/joe/2013october/tt1.php	high K treatments (Fig. 4)
DOUG	40-60	96	144	325	707	ACKNOWLEDGEMENTS	
L						The authors thank Dan Rivers and Jiayou Deng for technical assistance. Research was made possible by a grant from the California Department of Food & Agriculture.	