Introduction

Cultural practices such as row spacing are used to optimize the yield of soybean in the Mid South U.S. In Mississippi, a narrow row spacing of 15-inch (38 cm) was reported to optimize yields with indeterminate varieties as part of the Early Soybean Production System (Bowers et al., 2000). In recent years, producers have utilized twin-row equipment for planting corn to plant other crops such as soybeans. With respect to improved yields, results have been mixed for twin-row compared to single-row systems. Bell (2005) reported that twin-row seeded soybeans produced greater yields than single-row soybeans due to more pods per plant. Grichar (2007) compared yields for single- and twin-row soybeans at two locations in Texas and reported increased yields with twin rows of both MG IV and MG V cultivars. In Louisiana, Mascagni et al. (2008) observed inconsistent yield increases in twin-plantings with MG IV cultivars. Brosn (2011) reported twin rows resulted in more plants and seeds per meter than single rows, and resulted in significant yield increases in soybeans grown in a clay soil but not at a site with a sandy soil type.

Twin-row planters are not common in Tennessee because the equipment is expensive compared to traditional planters and because limited data does not consistently show better yields with the twin-row system on flat pattern. Researchers in Tennessee became interested in skip-planting systems as an alternative to twin-row planting for potential to increase yield. Skip-row planting can be accomplished by taking a 15-inch (40 cm) row planter and shutting off every third unit to obtain a 2:1 skip pattern. Growers would use equipment already on farm and also less seed would be planted which would be a cost savings of approximately $20 to $40 per acre depending on seed rate and seed cost. As Jackson TN in 2013, skip-row planting out yielded 15-inch (40 cm) single-row (row 1 figure 1) at different planting rates with a MG III and MG IV culturav on a silt loam soil, with yield increase due to increased pod production from branch pods. Subsequently, our objective in 2014 was to evaluate skip-row and 15-inch (40 cm) single-row systems on a large scale at multiple field sites.

Methods

Skip-row and 15-inch (40 cm) row systems were compared at 11 field sites across Tennessee in 2014 using cultivars chosen by the producer for each site with a minimum of three replications of each row pattern at 20 of 11 sites. Two locations included a 30-inch (76 cm) row comparison. Producers planted MG IV (L), MG IV (T) and MG V (S) varieties using 12 to 28 row equipment. Equipment was set for the producer’s desired seeding rate (140,000 to 165,000 seeds/acre) and single-row strips were planted. The same population settings were maintained while selected units were disabled to obtain the skip-pattern. Plots were planted in May 1, (June 1), June 2 (July) and July 1 (July 5). Four sites were irrigated and six were rainfed. Rainfall was excellent throughout the growing season and temperatures were moderate to below normal for the season. A university scout checked fields weekly and weeds, insects and diseases were managed according to University of Tennessee recommendations. Stand counts were made 30 to 40 days after emergence. Plant height, node, total pod and branch pods were counted just prior to harvest. Plots were harvested with producer equipment and harvest weights were measured with a calibrated weigh wagon (Par-Kan Company; Silver Lake, IN). Harvest data from eight of the eleven sites has been collected to date.

Each location was analyzed separately as a randomized complete block design (RCBD) using SAS Proc Mixed where block was a random factor, row configuration was a fixed factor, and the responses included yield, average plant height, average number pods per plant, average total pods per plant, average branch pods per plant. Analysis of height, nodes, total pods, and branch pods were done on an average of 20 plants in each plot. All comparisons were done using a protected LSD at a 0.05 level.

Results (Figure 2 and 3)

• Skip-row yielded similarly in most cases but used less seed and at lower populations
• Skip-row resulted in numerically increased nodes in all environments
• Skip-row increased total pods numerically in all environments and statistically in 4/6 environments
• Skip-row increased branch pods numerically in all environments and statistically in 2/6 environments
• In reduced branching (15-inch) treatments, yield components are more strongly influenced by stand with more significant correlation with nodes, pods, branch pods as compared with the skip-rows

Conclusions

On-farm results did not match what was observed in small plot research. Further research is planned to evaluate skip-row planting at higher populations and effect of variety on branching and yield in a skip-row system.

The authors would like to express their appreciation to the Tennessee Promotion Board for providing support for this research.

References Cited

