Graduate School of Engineering Science and Technology.

${ }^{2}$ Research Center for Soil \& Water Resources and Natural Disaster Prevention, National Yunlin University of Science and Technology. ${ }^{3}$ Department and Graduate School of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology.

An Investigation on the Reciprocity Theory with In-Situ Test Abstract

In this study, the pumping test of reciprocity between wells is developed for 11 wells located on campus of NYUST. The reciprocity analysis is conducted with the heterogeneous hydrogeological parameters distributions of the site. The mathematical theory of reciprocity implies that choose one as stimulation point and the other as observed response point in two known points at the same random field. Repeat the above action, the response behavior should have the reciprocity between the two points. However, the lack of literature with the in-situ experiment to prove that reciprocity principle. Therefore, this study is expected to investigate the reciprocity of drawdown with the sequential pumping test which will have heterogeneous hydrogeological parameters distributions obtained by inverse method. In general, there are two ways to investigate the reciprocity of pumping tests of two sequential wells. One way is to evaluate the drawdown reciprocity of two sequential wells. From the evaluation the reciprocity of the drawdown behavior during the sequential pumping wells, the reciprocity of the drawdown behavior is investigated. The other one is to estimate cross-correlation between the drawdown behavior of the sequential pumping wells and heterogeneous hydrogeological parameters distributions. The reciprocity of between the drawdown and the heterogeneous parameters distributions is therefore can be investigated. This study proved the reciprocity of drawdown with the sequential pumping test and heterogeneous hydrogeological parameters distributions obtained by inverse method. Meanwhile, we proved the reciprocity is existed during the pumping test in the aquifer Keywords: Stimulation, Response, Reciprocity, Cross-correlation

Study Motivation

Bruggeman [1972], Hariga et al. [2010], and Delay et al. [2011, 2012] proved the reciprocity exists between pumping well and observation well by mathematical in unconfined Aquifer. No study proves the reciprocity exists at field studies in a confined aquifers.

Study Purpose

Using field data prove the reciprocity of pressure head(h) between any two well sets. Viewing the reciprocity whether exists in the distributions of correlation between the heterogeneous hydrogeological parameters and h from any two well sets during pumping test in a confined aquifers.

Description of the Field Site

1. Area about 100 m 2
2. 11 boreholes (BH01 through BH11)
3. Confined Aquifer
4. A detailed description of the field site and geology is given
in Wen et al. [2010]

Reciprocity of

Observed Drawdowns during Pumping Test at Field Site The equation (1) from Delay et al. [2011] used in viewing the reciprocity of drawdown during pumping test in unconfined Aquifer.

of continuous equation is linear in a confined aquifers. Therefore, we defined the equation (2) viewing the reciprocity of h from pumping test in heterogeneous confined aquifer whether exist. If left side equal right side from equation (2)		

Where $h_{A B}(t)$ is the pressure head at location A while pumping in B , and $h_{A B}(t)$ is the pressure head at location B while pumping in A , and $h(0)$ being the initial head, and is drawdown.

$$
\text { If Stress } \mathrm{A}=\text { Stress } \mathrm{B} \text {, so drawdown } \mathrm{A}=\text { Drawdown } \mathrm{B} \text {. }
$$

Cross-correlation Analysis with Numerical Simulation

The total 110 distributions of heterogeneous hydrogeological parameters (Transmissivity (T) and Storativity (S)) were
inversed with unsteady h from 11 pumping tests by Transient Hydraulic Tomography (THT). The flowchart as Fig 3.

cross-correlation the hydrogeological parameters (T and S) used in of hydrogeological parameters are 441 grids $(21 \mathrm{~m} \times 21 \mathrm{~m})$ in 2 of hydrogeological parameters are 44 grids (21 $\mathrm{m} \times 21 \mathrm{~m}$) in 2-D
hydrogeological modeling (as Fig 4 shown). We
choose the predicted h of observation well BH05 a same time with pumping well BH 04 from 110 cases during forward analysis. Then, the correlation coefficient is calculated with the 110 predicted h of observation well BH05 at same time and the 110 hydrogeological parameters value of each grid. Therefore the contour map were produced by Therefore, the contour map were prid
correlation coefficients of 441 grid.

Conclusion

