# Liquid Swine Manure Application Timing and Instinct<sup>TM</sup> on Net Soil N **Mineralization and Corn Yield in Indiana**



### Introduction

In the Midwest USA, farmers tend to apply manure to cropland in the fall due to storage limitations and favorable soil conditions. Greater N losses are associated with fall-applied manure compared to spring-applied manure due to the long time between manure application and corn N demand. Delaying manure application until soils are cool (< 4°C) and using of nitrification inhibitors like Instinct<sup>™</sup>, may reduce N losses from liquid swine manure and increase manure N availability to corn.

### **Objectives**

To evaluate the effects of swine manure application timing and Instinct<sup>™</sup> on manure N availability and corn grain yield.

## **Materials and Methods**



Manure N rates: (Total N, Potentially Available N)

**2011-2012 locations:** 

Location 1: 420 kg N/ha, 340 kg N/ha

Location 2: 240 kg N/ha, 200 kg N/ha

**2012-2013 locations:** 

Location 3:

165 kg N/ha, 130 kg N/ha Location 4:

165 kg N/ha, 130 kg N/ha (Additional 67 kg N/ha sidedressed UAN applie on manure-treated soils)

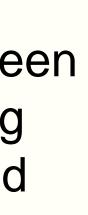
### **Randomized Complete Block Design**

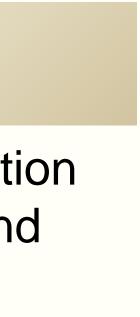
### **Treatments:**

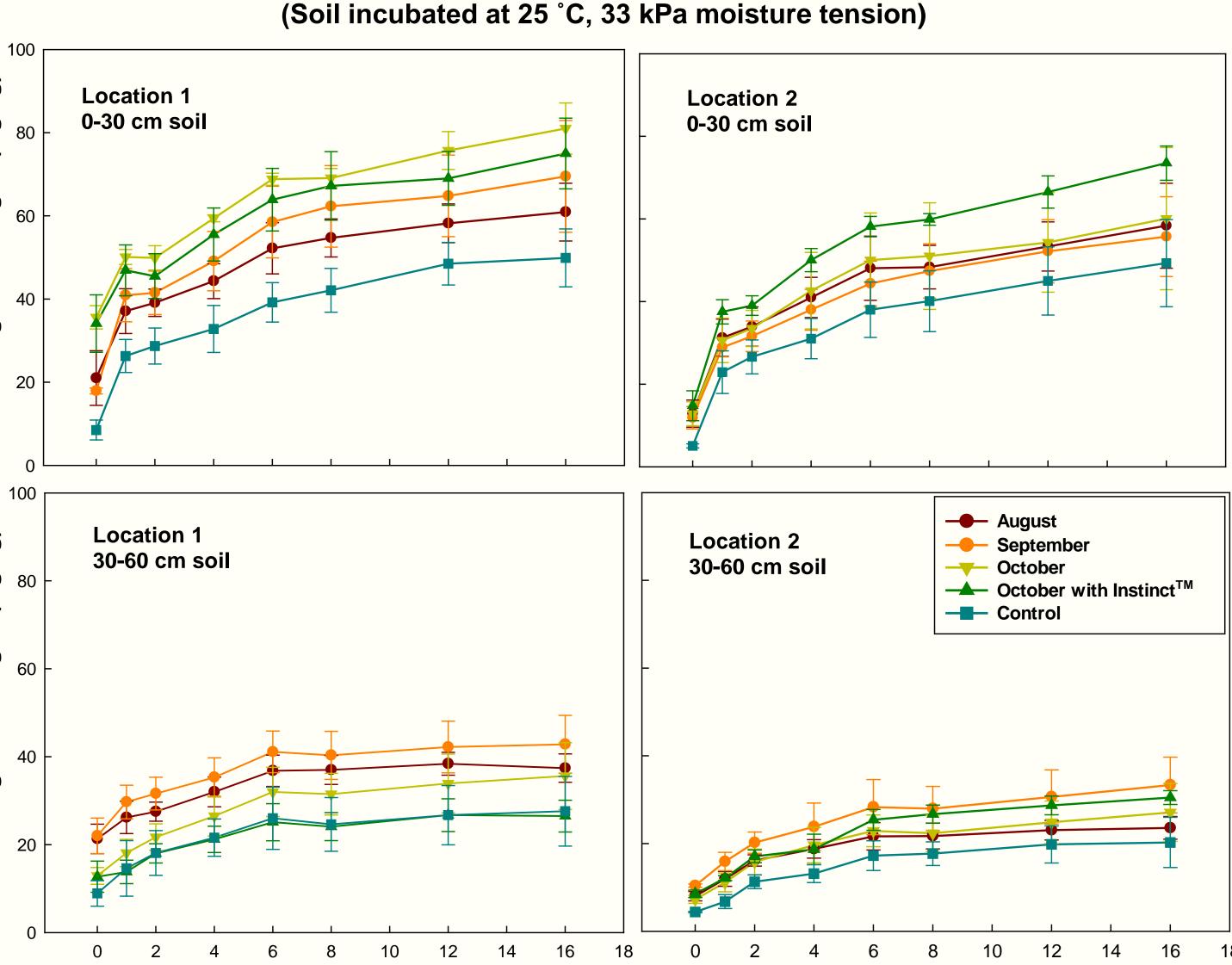
Manure Applications Timing Treatments: Early fall (Aug./Sept.), late fall (Oct./Nov.) and spring (Mar., Apr./May)

Manure plus Instinct<sup>™</sup> (2.6 L/ha) Treatments: Late fall (Oct./Nov.), and spring (Mar., Apr.) **Commercial Fertilizer Treatments:** 

134 kg N/ha, 179 kg N/ha, 224 kg N/ha.


(Pre-plant anhydrous ammonia 82-0-0 at Location 1 an sidedress UAN 28-0-0 at Location 2, 3 and 4.)


**Corn** was planted in April 2012 at Locations 1 and 2 and May 2013 at Locations 3 and 4. Corn grain yields were taken from the center rows with a combine.


**Soil samples** were collected 12/14/2011 at Locations 1 and 2, and 11/20/2012 at Locations 3 and 4.

Min Xu<sup>\*</sup>, Brad C. Joern, James J. Camberato Department of Agronomy, Purdue University, West Lafayette, IN, 47907

### **Results and Discussion**





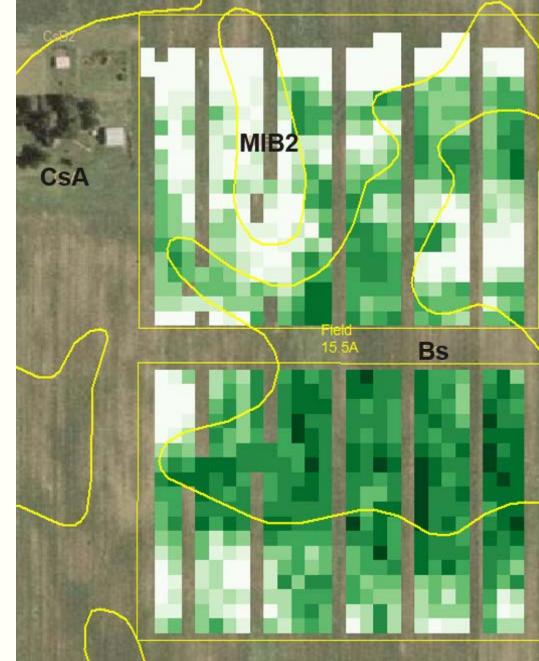


- $\succ$  During incubation study, negligible amounts of NH<sub>4</sub>+-N were recovered from 1M KCI soil extracts in all treatments.
- Topsoil and subsoil N levels were greater at Location 1 than Location 2, but the differences in soil N were small compared to the differences in the amount of manure N applied.
- > Differences in total inorganic N after 16 weeks of incubation were mainly due to the differences in initial total inorganic N.
- > Movement of manure N applied in Aug. and Sept. from 0-30 cm to 30-60 cm soil was evident at Location 1, likely due to nitrification of swine manure and subsequent nitrate leaching in the soil profile.

| Corn yield resp            | onse to swir       | ne manure applica | ation timing | g and instir       |
|----------------------------|--------------------|-------------------|--------------|--------------------|
|                            |                    | 2011-2012         |              |                    |
| N source -<br>or statistic | N timing /<br>rate | NI Location 1     | Location 2   | N timing /<br>rate |
|                            |                    |                   |              |                    |

Incubation Time (week)

| N source<br>or statistic                                                                        | 2011-2012               |       |            | 2012-2013  |                      |       |            |                         |
|-------------------------------------------------------------------------------------------------|-------------------------|-------|------------|------------|----------------------|-------|------------|-------------------------|
|                                                                                                 | N timing /<br>rate      | NI    | Location 1 | Location 2 | N timing /<br>rate   | NI    | Location 3 | Location 4 <sup>†</sup> |
|                                                                                                 |                         | Mg/ha |            |            |                      | Mg/ha |            |                         |
| Manure                                                                                          | August<br>(426, 243)‡   | (-)   | 11.2       | 5.1        | August               | (-)   | 5.1 f      | 12.2                    |
| ( (<br>( (<br>( (<br>( (<br>( (<br>( (<br>( (<br>( (<br>( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | September<br>(417, 255) | (-)   | 12.2       | 4.8        | October<br>(138)§    | (-)   | 5.6 ef     | 13.5                    |
|                                                                                                 | October<br>(418, 256)   | (-)   | 12.1       | 4.8        | October<br>(138)     | (+)   | 5.5 ef     | 12.1                    |
|                                                                                                 | October<br>(418, 256)   | (+)   | 10.2       | 5.2        | November<br>(194)    | (-)   | 6.1 de     | 12.0                    |
|                                                                                                 | March<br>(476, 231)     | (-)   | 11.1       | 5.2        | November<br>(194)    | (+)   | 6.3 cde    | 12.7                    |
|                                                                                                 | March<br>(476, 231)     | (+)   | 10.6       | 5.0        | May surface<br>(165) | (-)   | 7.1 c      | n/a                     |
|                                                                                                 | April<br>(379, 224)     | (-)   | 11.5       | 5.2        | May<br>(165)         | (-)   | 6.9 cd     | n/a                     |
|                                                                                                 | April<br>(379, 224)     | (+)   | 12.6       | 5.3        |                      |       |            |                         |
| Fertilizer <sup>¶</sup>                                                                         | 134 kg N/ha             | (-)   | 11.6       | 5.7        | 134 kg N/ha          | (-)   | 8.3 b      | 12.2                    |
|                                                                                                 | 179 kg N/ha             | (-)   | 11.0       | 7.5        | 179 kg N/ha          | (-)   | 9.5 a      | 13.5                    |
|                                                                                                 | 224 kg N/ha             | (-)   | 11.9       | 6.0        | 224 kg N/ha          | (-)   | 10.0 a     | 13.5                    |
| P>F                                                                                             |                         |       | 0.42       | 0.35       |                      |       | <0.0001    | 0.19                    |


‡ Numbers in parentheses: total manure N rates applied at Location 1 and 2, respectively. § Number in parentheses: total manure N rate at Location 3 and 4. ¶ Commercial fertilizer form: anhydrous ammonia (82-0-0) at Location 1, urea ammonium nitrate (UAN) (28-0-0) at Locations 2, 3, and 4.

Soil N mineralization for samples collected in December from fall-applied manure treatments.

Incubation Time (Week)

- season.
- at Location 4.

> No significant effects on corn grain yield were observed from the use of Instinct<sup>TM</sup> with manure application. Grain yield was unaffected by manure application timing at Locations 1 and 2 due to limited rainfall during 2012 growing > At Location 3, corn grain yield was significantly greater in spring-applied manure treatments compared to early fall manure treatments; and grain yield in manure-treated soils was significantly less than in fertilizer-treated soils. > Additional 67 kg N/ha fertilizer N input together with 165 kg total manure N/ha supplied enough N for optimum grain yield Corn yield response and soil type interaction at Location 1 during 2012 drought. (Brookston: SiCL; Crosby: SiL; Miami: SiL) Brookston: 13.3 Mg/ha 10.4 Mg/ha Crosby 6.6 Mg/ha Miami P-value: 0.0037 15,000-16,300 kg/ha · · · Water holding capacity of different soil types significantly affected corn yield in a drier-than-normal growing season. (Brookston: 18.1 cm  $H_2O/100$  cm soil; Crosby: 16.8 cm  $H_2O/100$  cm soil)



### **Summary**

- > Swine manure application timing or the use of Instinct<sup>TM</sup> did not affect cumulative soil mineralized N.
- > Swine manure N availability potential: Spring > Fall
- > Weather variations have a great influence on swine manure N availability to corn;
- $\succ$  Little impact from Instinct<sup>TM</sup> on manure N availability was observed during the two study years.

## Acknowledgement

Thanks to the Indiana Soybean Alliance and the Indiana Corn Marketing Council for providing funding for this research.