

The Effect of Dew on Ammonia Volatilization

from Surface-Applied Broiler Litter

Kate Cassity-Duffey and Miguel Cabrera; katecass@uga.edu Department of Crop & Soil Sciences - University of Georgia; Athens, GA

() ()

INTRODUCTION

Previous studies have indicated that atmospheric water can lead to increased ammonia (NH₃) volatilization from surface-applied broiler litter. While observing the effects of environmental variables on NH₃ volatilization from surface-applied broiler litter, we measured an increase in litter water potential from -20 MPa to -11.5 MPa from 12AM to 6AM the following morning. This change in water potential is equivalent to an increase from 30 to 50% in litter water content from atmospheric deposition of water and dew. Increased litter water content from dew deposition can lead to increased mineralization of organic nitrogen and increased loss through NH₃ volatilization, leading to an overall decrease in the fertilizer value of broiler litter.

RESULTS: MEASURING DEW

- 188 dew days
- Avg. dew 0.2 mm
- Ranging 0 to 0.45 mm

Fig. 1. The effect of dew and atmospheric water deposition on ammonia volatilization.

Ibel

OBJECTIVES

1. Determine daily rates of dewfall in pasture located in the Southern Piedmont. 2. Measure NH_3 loss from surface-applied broiler litter under diurnal fluctuations with and without dew.

RESULTS: AMMONIA LOSS

- With dew loss = 68% applied
- NH_4 -N (7.4% Applied TN).
- Without dew loss = 35% applied NH_4 -N (3.8% Applied TN).

MATERIALS AND METHODS

MEASURING DEW

and 15.

- Seven microlysimeters were constructed from PVC and aluminum (Fig. 3.).
- Grass/soil cores in the sample cup (12.5 o.d. with 4-cm depth).
- Load cells were connected to CR10X datalogger. Temperature, 3. RH, soil temperature, and wind measured.
- Dew was calculated as the difference in weight from 10PM to 4. 6AM the following day, for total of 205 days.

THE EFFECT OF DEW ON AMMONIA LOSS

- Broiler litter was surface applied to dry soil (packed in acrylic cylinders (4.2 i.d. x 10 cm).
- Four reps (eight total) received simulated dew treatments

Acid traps

Flow Meters

Fig. 8. Cumulative ammonia loss over 15 d.

CONCLUSIONS

1. Dewfall is common in Southern Piedmont pastures and could lead to significant changes in water content for surface-applied broiler. 2. Under lab conditions, dew significantly increases NH₃ volatilization from surface applied litter.

equivalent to 0.2 mm of dew every 24 h.

Samples were placed in a dynamic flow through system (Fig.4.) 3.

with 24-h fluctuations in RH (32-90%) and temperature (7-28°C).

Air flow was regulated at 0.2 L min⁻¹ and bubbled through 0.5 N 4.

H₂SO₄ traps to capture NH₃. Traps changed days 1, 2, 3, 5, 7, 10

ACKNOWLEDGEMENTS

Decagon Devices and the G.A. Harris Fellowship

John Rema and Vaughn Calvert