Effect of Trinexepac-Ethyl Plant Growth Regulator on Wheat Yield

Michael Flowers and Nicole Anderson

Oregon State University

Introduction

Growers in the high rainfall production zones of Oregon are accustomed to applying trinexapacethyl (TE) plant growth regulator to their grass seed crops to increase seed yield. The yield increase in grass seed production is associated with a reduction in lodging that improves pollination and seed development. With the recent introduction of TE into the cereal market, growers are interested in determining if TE will increase their yields and/or if they can apply additional N to increase wheat yields without increasing lodging risks. Plant growth regulators have been previously studied in wheat and found not to significantly increase yield, however plant growth regulators did significantly reduce plant height and lodging. In the fall of 2012 a multiyear study was initiated to determine the effect of TE with and without additional N fertilizer on wheat yield.

Results

	2014 Forest Grove, OR											
			Kasek	berg		Bobtail						
N Treatment (kg ha ⁻¹)	TE Treatment (L ha ⁻¹)	Yield (Mg ha⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)	Yield (Mg ha⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)			
157	0	10.03 a	100.0 a	7.6 b	0	10.52 a	100.0 a	7.9 d	0			
157	0.9 at GS 30	10.33 a	93.8 cd	8.2 b	0	10.71 a	96.3 abc	8.4 cd	0			
157	0.9 at GS 37	10.37 a	91.3 cd	8.2 b	0	10.73 a	87.5 e	8.4 cd	0			
157	0.45 at GS 30 and 0.45 at GS 37	10.63 a	93.8 cd	8.1 b	0	10.88 a	92.5 cd	8.8 c	0			
252	0	10.86 a	98.8 ab	9.3 a	0	11.23 a	98.8 ab	9.6 b	0			
252	0.9 at GS 30	10.68 a	95.0 bc	9.4 a	0	10.48 a	95.0 b	10.2 ab	0			
252	0.9 at GS 37	10.27 a	90.0 d	9.8 a	0	11.01 a	91.3 de	10.1 ab	0			
252	0.45 at GS 30 and 0.45 at GS 37	11.07 a	95.0 bc	9.4 a	0	11.00 a	92.5 cd	10.3 a	0			

1)To determine if TE increases wheat yield with or without additional N fertilizer.

2)To evaluate the effects of TE with and without additional N fertilizer on plant height, protein content, test weight, and lodging in wheat.

Materials and Methods

Four study sites were located in the high rainfall and irrigated wheat production regions of Oregon. Treatments were arranged in a split-plot design with four replications. Whole plots consisted of two N fertilizer rates across four TE application rate and/or timing treatments. Nitrogen fertilizer rates evaluated included a standard growers practice of 157 kg ha⁻¹ and a higher rate of 252 kg ha⁻¹. Nitrogen applications were applied in the spring at Zadoks growth stage (GS) 30. Trinexapac-ethyl treatments consisted of a single application of 0.9 L ha⁻¹ at GS 30, a single application of 0.9 L ha⁻¹ at GS 37, a split application of 0.45 L ha⁻¹ at GS 30 plus 0.45 L ha⁻¹ at GS 37, and a control. Subplots consisted of two new soft white winter wheat varieties, Kaseberg and Bobtail. Study sites were monitored throughout the growing season and standard practices were used to control weeds and pests. Prior to harvest treatments were evaluated for lodging and plant height measurements were taken. At maturity, plots were harvested using a small plot combine and measurements of grain yield, test weight, and grain protein content obtained.

N X TE Treatments X Variety NS

2014 Hermiston, OR											
			Kasel	berg			Bobt	ail			
N Treatment (kg ha ⁻¹)	TE Treatment (L ha ⁻¹)	Yield (Mg ha⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)	Yield (Mg ha ⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)		
157	0	9.81 a	107.5 a	11.2 c	8.8 a	11.54 a	107.5 a	12.1 ab	60.0 a		
157	0.9 at GS 30	10.42 a	106.3 a	10.8 c	0 a	10.90 a	106.3 a	11.1 c	38.8 a		
157	0.9 at GS 37	10.58 a	105.0 a	11.0 c	5.0 a	11.46 a	102.5 a	11.3 bc	43.8 a		
157	0.45 at GS 30 and 0.45 at GS 37	10.46 a	105.0 a	11.4 bc	5.0 a	11.73 a	103.8 a	11.4 bc	46.3 a		
252	0	10.34 a	105.0 a	12.2 a	21.3 a	10.17 a	107.5 a	12.8 a	78.8 a		
252	0.9 at GS 30	9.27 a	105.0 a	12.4 a	8.8 a	10.40 a	105.0 a	12.1 ab	67.5 a		
252	0.9 at GS 37	9.99 a	105.0 a	12.3 a	13.8 a	10.24 a	103.8 a	12.7 a	73.8 a		
252	0.45 at GS 30 and 0.45 at GS 37	9.28 a	105.0 a	12.0 ab	12.5 a	10.20 a	106.3 a	12.5 a	77.5 a		

2013 Forest Grove, OR											
			Kasel	berg			Bobt	ail			
N Treatment (kg ha ⁻¹)	TE Treatment (L ha ⁻¹)	Yield (Mg ha ⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)	Yield (Mg ha⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)		
157	0	10.50 ab	101.3 a	8.8 d	0	10.92 a	103.8 a	8.9 c	0		
157	0.9 at GS 30	10.60 ab	97.5 abc	9.3 cd	0	11.39 a	97.5 b	9.5 bc	0		
157	0.9 at GS 37	10.42 b	92.5 d	9.6 bc	0	11.38 a	95.0 b	9.4 bc	0		
157	0.45 at GS 30 and 0.45 at GS 37	10.46 ab	93.8 cd	9.2 cd	0	11.25 a	93.8 b	9.6 b	0		
252	0	10.77 a	101.3 a	10.1 ab	0	11.59 a	106.3 a	10.4 a	0		
252	0.9 at GS 30	10.37 b	98.8 ab	10.2 a	0	11.62 a	98.8 b	10.5 a	0		
252	0.9 at GS 37	10.16 b	91.3 d	10.5 a	0	11.66 a	95.0 b	10.8 a	0		
252	0.45 at GS 30 and 0.45 at GS 37	10.39 b	95.0 bcd	10.4 a	0	11.57 a	98.8 b	10.5 a	0		

|--|

		•					
						252	0.9 at GS 37
	201	252	0.45 at GS 30 and 0.45				
Source of Variation	Yield	Test Weight	Plant Height	Protein Content	Lodging		
Replications	NS	NS	NS	***	NS		
N X TE Treatments	NS	NS	***	***	NS	N Treatment	TE Treatmen
Variety	*	***	NS	***	NS	(kg ha ⁻¹)	(L ha ⁻¹)

NS

NS

2014 Hermiston, OR											
Source of Variation	Yield	Test Weight	Plant Height	Protein Content	Lodging						
Replications	***	***	NS	***	**						
N X TE Treatments	NS	NS	NS	***	**						
Variety	**	NS	NS	**	***						
N X TE Treatments X Variety	NS	NS	NS	NS	NS						

NS

NS

2013 Forest Grove, OR										
Source of Variation	Yield	Test Weight	Plant Height	Protein Content	Lodging					
Replications	***	**	NS	***	NS					
N X TE Treatments	NS	NS	***	***	NS					
Variety	***	***	**	***	NS					
N X TE Treatments X Variety	NS	NS	NS	**	NS					

2013 Tangent, OR											
			Kasek	berg			Bobt	ail			
N Treatment (kg ha ⁻¹)	TE Treatment (L ha ⁻¹)	Yield (Mg ha⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)	Yield (Mg ha⁻¹)	Plant Height (cm)	Protein Content (%)	Lodging (%)		
157	0	10.00 a	110.0 a	10.5 a	0	10.05 a	111.3 ab	9.4 b	0		
157	0.9 at GS 30	9.66 a	110.0 a	9.2 a	0	9.63 a	111.3 ab	9.4 b	0		
157	0.9 at GS 37	10.55 a	100.0 b	9.8 a	0	10.20 a	100.0 d	9.2 b	0		
157	0.45 at GS 30 and 0.45 at GS 37	10.29 a	105.0 ab	9.9 a	0	9.87 a	105.0 cd	9.5 b	0		
252	0	9.90 a	108.9 a	10.7 a	0	9.72 a	108.8 abc	10.9 a	0		
252	0.9 at GS 30	10.01 a	110.0 a	10.2 a	0	10.01 a	113.8 a	10.9 a	0		
252	0.9 at GS 37	9.05 a	98.8 b	10.7 a	0	9.23 a	103.8 cd	11.5 a	0		
252	0.45 at GS 30 and 0.45 at GS 37	9.88 a	105.0 ab	10.5 a	0	9.89 a	106.3 bc	10.8 a	0		

Conclusions

- TE application with or without additional N did not significantly increase wheat yield.
- TE applications of 0.9 L ha⁻¹ at GS 37 consistently and significantly reduced plant height by 8 to 12 cm. • Split TE applications of 0.45 L ha⁻¹ at GS 30 and GS 37 consistently and significantly reduced plant height 6 to 10 cm.

2013 Tangent, OR										
Source of Variation	Yield	Test Weight	Plant Height	Protein Content	Lodging					
Replications	NS	***	**	***	NS					
N X TE Treatments	NS	NS	***	**	NS					
Variety	NS	NS	NS	NS	NS					
N X TE Treatments X Variety	NS	NS	NS	NS	NS					

• TE applications of 0.9 L ha⁻¹ at GS 30 did significantly reduced plant height 6 to 7 cm, however plant

height reduction was inconsistent across site years.

- TE applications did not significantly affect test weight or protein content.
- TE applications did not significantly reduce lodging in our study, however there was a trend for

decreased lodging with TE application.

• Additional N fertilizer significantly increased grain protein by 1 to 2%.

 $* = P \le 0.05$ $** = P \le 0.01$ $*** = P \le 0.001$ NS = Not Significant