Choosing the Best Vegetation Index for Use in Nitrogen Use Efficiency Selection

Lincoli *Pioneering new frontiers.*

in Winter Wheat

Katherine Frels¹, Mary Guttieri¹,

Bryan Leavitt², Brian Wardlow², P. Stephen Baenziger¹

Figure 2. Entry mean heritability of VI and plant

- (H²) Hity (H²)

0.25 -

productivity parameters in 2012 (red) and 2013 (blue).

¹Department of Agronomy and Horticulture, ²CALMIT, University of Nebraska, Lincoln, NE 68583 USA

INTRODUCTION

- Nitrogen use efficient (NUE) crops are needed due to environmental impacts and high nitrogen (N) costs.
- Traditional phenotyping methods for NUE are labor intensive and destructive.
- Canopy spectral reflectance (CSR) can be used as a proxy for physical sampling.
 - Data is collected in a short time period with low labor requirements.
 - Measurements are non destructive and repeatable.

		Table 1: Vegetation indices used				eg sha	Figure 1. EVI and NDVI season		
		Acryonym	Index	Formula	Reference		curves for check genotype Jagger 2012 (red) and 2013 (blue).		
		NDVI	Normalized difference vegetation index	$\frac{R_{890} - R_{670}}{R_{890} + R_{670}}$	Rouse et al. (1973)				
		NDVIg	Green normalized difference vegetation index	$\frac{R_{750} - R_{550}}{R_{750} - R_{550}}$	Gitelson et al. (1996)		2 - ender A constrained and a		
	1		Enhanced	$2.5(R_{NIR}-R_{RED})/$	Huete et al.	116			

OBJECTIVES

- Examine relationship between vegetation indices and measures of plant productivity for use in NUE phenotyping.
- Test ability of vegetation indices to discriminate genotypes.

MATERIALS

Plant Material

Hard Winter Wheat Association Mapping Panel

- 299 genotypes
- 2 check genotypes Located near Ithaca, NE in 2012 and 2013
- Split plot augmented design
 - Whole plot: two nitrogen treatments 44 and 88 kg ha⁻¹ residual + applied
 - Subplot: 299 genotypes arranged in incomplete blocks of 20 entries plus 2 check plots
- Two replications
- Plot size: 4 rows, 3m long with 30.5 cm spacing. Equipment
- A two inter-calibrated Ocean Optics

Figure 3. EVI, NDVIg, Anthesis Biomass, and Grain N Yield in 2012 regressed on 2013 values.

USB2000+VIS-NIR spectrometer system developed by CALMIT was used to measure downwelling and upwelling radiation simultaneously.

- Spectral Resolution: 0.4 nm; 350.02 to 1011 nm. **Measures of Plant Productivity**
- Anthesis biomass: 2 x 30cm row
- Anthesis and maturity date: Julian date
- Plant height: cm
- Grain weight: g/m²
- Grain N yield = (grain yield) x (N concentration **METHODS**
- 2012
 - CSR measured at 4 point measurements in center two rows of plot.
 - Data recorded in first replication of trial.
- 2013
 - CSR measured by continuous scanning of center two rows of plot.
- Data recorded in both replications of trial. **Vegetation Indices**

Table 2: Correlations of VI in 2012 and 2013 at Week 3 with plant productivity measures (N=278)

THE COMPANY		Year	Anthesis Date	Anthesis Biomass	Plant Height	Grain N Yield	Grain Weight	Maturity Date		
10	CI†	2012	0.591***	0.533***	0.372***	0.437***	0.480***	0.634***		
	EVI	2012	0.722***	0.656***	0.572***	0.344***	0.426***	0.737***		
2	NDVI	2012	0.659***	0.611***	0.548***	0.363***	0.430***	0.681***		
1	NDVIg	2012	0.603***	0.551***	0.429***	0.436***	0.484***	0.642***		
	NDVIre	2012	0.652***	0.605***	0.553***	0.361***	0.427***	0.670***		
2	CI	2013	0.067ns	0.044ns	-0.229***	0.434***	0.481***	0.247***		
	EVI	2013	0.283***	0.212**	0.150**	0.127*	0.150**	0.365***		
	NDVI	2013	0.222**	0.132*	-0.099ns	0.287***	0.348***	0.373***		
1	NDVIg	2013	0.060ns	0.022ns	-0.216**	0.434***	0.484***	0.257***		
	NDVIre	2013	0.200**	0.126*	-0.078ns	0.304***	0.357***	0.126***		
	CONCLUSIONS ⁺ Pearson <i>r</i> *= <i>p</i> < 0.05, ** = <i>p</i> < 0.01 *** = <i>p</i> < 0.001									

The most predictive VI differed in the two years due to environmental effects.

All vegetation indices calculated in T3 database

(http://triticeaetoolbox.org/) according to formula

shown in Table 1.

Yield limiting environment (2012): EVI had the highest heritability and had high correlations with plant productivity parameters.

Optimal yield environment (2013): VI had highly heritability but were less sensitive to genotype

differences. Alternative VI or analysis methods are needed.

CONTACT: katherine.frels@gmail.com

ACKNOWLEDGEMENTS: Research supported by USDA-NIFA Triticeae-CAP grant (2011-68002-30029)

STATISTICS: SAS Institute (2010). Cary, NC. SAS Version 9.3 **GRAPHICS:** R Core Team (2013). Vienna, Austria. URL http://www.R-project.org/.