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The maximum water table depth, Dmax, that sustains a
hydraulic connection with the soil surface during
evaporation is termed “characteristic length of evaporation”
(Lehmann et al., 2008) and provides a length scale, which is
correlated with soil hydraulic properties.

In this paper a new general solution for Dmax in coarse-
textured homogeneous and layered soils under steady-state
evaporation from a water table is presented. Here, ‘‘general’’
means that the solution is not restricted to a specific form of
the unsaturated hydraulic conductivity function.

The solution provides an alternative method for
determination of unsaturated hydraulic conductivity of
homogeneous soil profiles. Also it offers a new approach to
the effective or upscaled unsaturated hydraulic conductivity
of layered soil profiles.
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Buckingham–Darcy law:

Fig. 2. The new solution to Dmax from 
hydraulic conductivity function.
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Dmax: characteristic length (Fig. 1)
h: pressure head
hmax: pressure head at drying front
e: steady-state evaporation rate
K: unsaturated hyd. conductivity

(1)

In coarse-textured soils in
which K(h) has a steep slope
and e/Ks is negligible, it can
be analytically shown that
(Sadeghi et al., 2014):

max eD h (2)

he: pressure head at which K = e
(see Fig. 2)

Equation (2) states that the
steady-state evaporation
rate exhibits a measure for
unsaturated conductivity
at the pressure head equal
to Dmax. In summary, when
h = Dmax, K = e.

Fig. 1. Pressure head distribution 
above the water table.

Theoretical Considerations

Numerical Evaluation

Experimental Data

Fig. 3. Numerical solutions of Eq. (1)
using the van Genuchten K(h) function.
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Numerical solutions of Eq. (1) using
the van Genuchten (VG), a bimodal,
and the Tuller-Or-models validated
Eq. (2) for several coarse soils. Fig. 3
shows the results for the VG model.

An analytical solution for Dmax using Brooks-Corey function is
given by (Sadeghi et al., 2012):
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In coarse-textured soils (P large and e/Ks negligible), Dmax in Eq.
(3) is approximated by h(K = e) from Brooks-Corey conductivity
function:

An Analytical Test
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Effective Unsaturated Conductivity of Layered Soils 

Summary:
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Equation (2) indicates that the steady-state evaporation rate from a constant water table is a
macroscopic measure of unsaturated hydraulic conductivity in either homogeneous or layered
coarse-textured media. Therefore, the presented solution offers an easy method for
determination of unsaturated hydraulic conductivity of homogeneous soils and a new approach
to effective (upscaled) unsaturated hydraulic conductivity of layered soil systems.

Since the steady-state evaporation rate is a macroscopic quantity, it can be considered as an
“effective” K(h) for layered soil profiles. In other words, the resultant K(h) values determined
with Eq. (2) are representative for the entire Dmax domain.

In Fig. 5, a 60-cm long soil profile composed of three different sands with a water table at
the bottom of the profile was considered. The solution of Eq. (1) for the layered profile was
applied as the effective K(h) curve. The agreement between the numerical solutions for the
layered system and the introduced equivalent homogeneous profiles indicates the
applicability of our proposed approach for deriving effective K(h) of layered soils.

In Fig. 6, we considered a 500-layer periodically repeated binary profile composed of a fine
and a coarse sand. A constant water table was considered as the bottom boundary. The
effective K(h) obtained using the proposed method lies on the harmonic mean which is
consistent with the previous findings, for example, using the homogenization theory
(Neuweiler and Eichel, 2006).

Fig. 5. Numerical solution of Eq.
(1) for a 3-layer soil profile (thick
line) and for its equivalent
homogenous soil profile (circles).
The former solution (thick line)
was considered as the effective
(upscaled) conductivity function
of the equivalent homogenous
profile. Horizontal lines show the
layer interfaces.

Fig. 6. Numerical solution of Eq. (1)
for a 50-cm profile (thick line)
composed of 500 periodically
repeated layers of a fine sand and a
coarse sand as well as for its
equivalent homogenous soil profile
(circles).

Fig. 4. Experimental data for
unsaturated hydraulic conductivity
and steady-state evaporation rate.
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Eq. (2) offers a new method to
easily determine “column-scale”
K(h) in homogeneous soil columns
(Fig. 4). It was found that for e >
0.01 cm/day, the water table
depth (D) is ≈ Dmax.
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Solution of Eq. (1) for the 3-layer profile

Solution of Eq. (1) for the equivalent homogeneous profile
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