Introduction

Cover crops provide several important services in agroecosystems, but individual cover crop species vary in their capacity to provide specific services:

- Grasses (e.g. cereal rye, *Secale cereale* L.) provide excellent N scavenging and weed suppression,
- Legumes (e.g. hairy vetch, *Vicia villosa* Roth.) fix atmospheric N₂ and release plant-available N.

Hairy vetch-cereal rye mixtures can provide the services lent by the component species. They can also produce more biomass and accumulate more N than one or both of the species in monoculture.

Objectives

- To determine the extent that hairy vetch-cereal rye mixtures outperform monocultures in terms of biomass production and N content.
- To determine the effects of environmental and management variables on the biomass and N content of mixtures relative to monocultures.

Literature review and data collection

Data were collected from published studies that reported biomass and N content of cereal rye monocultures, hairy vetch monocultures, and hairy vetch-cereal rye mixtures. We also included data from an unpublished study conducted by the authors (Table 1).

Table 1. A summary of the studies used in the cover crop mixture meta-analysis.

Reference	Location	No. site-years ¹	Factors ²	n ³
Clark et al. 1994	MD	2	KD, SR	24
Ranells and Wagger 1996	NC	2	-	2
Clark et al. 1997	MD	4	KD	8
Teasdale and Abdul-Baki 1998	MD	2	-	2
Kuo and Jellum 2002	WA	4	-	4
Ruffo and Bollero 2003	IL	4	-	4
Sainju et al. 2005	GA	3	-	3
Clark et al. 2007	MD	2	Ν	5
Parr et al. 2011	NC	2	KD	8
Hayden et al. 2014	MI	2	SR	10
Poffenbarger et al. (accepted)	MD	4	SR	16
Total		31		86

¹The number of site-years from each study used in our review. For some studies, not all site-years met criteria for inclusion in our analysis.

 2 KD= kill date, SR = mixture seeding rate, N = soil inorganic N.

³The number of unique cases from each study used in the meta-analysis

Means and standard deviations from every site-year and factor level (i.e. each case) were entered into a spreadsheet individually. The summary statistics for the data gathered from all 11 studies are presented in Figure 1.

The following variables were recorded for each case:

- Hairy vetch sown proportion in mixture,
- Sum of sown proportions,

Sum of sown proportions =	(Hairy vetch seeding rate _{mixture})	(Cereal rye seeding rate _{mixtu}	
	Hairy vetch seeding rate _{mono})	$\left(\begin{array}{c} Cereal rye seeding rate_{mono} \end{array} \right)$	

• Growing degree days (base = 4^o C).

References

Clark, A.J., A.M. Decker, and J.J. Meisinger. 1994. Seeding rate and kill date effects on hairy vetch-cereal...Agron. J. 86: 1065–1070. Clark, A.J., et al. 1997. Kill date of vetch, rye, and a vetch-rye mixture: I. Cover crop and corn nitrogen. Agron. J. 89: 427–434. Clark, A.J., et al. 2007. Effects of a grass-selective herbicide in a vetch-rye cover crop system on corn grain... Agron. J. 99: 43–48. Hayden, Z., M. Ngouajio, and D. Brainard. 2014. Rye-vetch mixture proportion tradeoffs: Cover crop...Agron. J. 106: 904–914.. Kuo, S., and E.J. Jellum. 2002. Influence of winter cover crop and residue management on soil nitrogen... Agron. J. 94: 501–508. Parr, M., et al. 2011. Nitrogen delivery from legume cover crops in no-till organic corn production. Agron. J. 103: 1578–1590. Pinheiro, J., et al. 2014. nlme: Linear and nonlinear mixed effects models. R package version 3.1–117. Ranells, N.N., and M.G. Wagger. 1996. Nitrogen release from grass and legume cover crop monocultures... Agron. J. 88: 777–782. Ruffo, L., and A. Bollero. 2003. Modeling rye and hairy vetch residue decomposition as a function of degree... Agron. J. 95: 900–907. Sainju, U.M., W.F. Whitehead, and B.P. Singh. 2005. Biculture legume–cereal cover crops for enhanced...Agron. J. 97: 1403–1412. Teasdale, J.R. and A.A. Abdul-Baki. 1998. Comparison of mixtures vs. monocultures of cover crops for....HortScience 33: 1163–1166.

Acknowledgements

Funding was provided by University of Maryland and USDA-ARS. We thank Matthew Kramer for his help with the statistics.

mixtures performed relative to monocultures.