

Iron Oxide Colloid Mobility as Affected by DOM

Jannis Florian Carstens¹, Jörg Bachmann², Insa Neuweiler³

¹ NTH Graduate School GeoFluxes, Institute of Soil Science, Leibniz University Hannover, Germany (carstens@ifbk.uni-hannover.de) ² Institute of Soil Science, Leibniz University Hannover, Germany ³ Institute of Hydromechanics, Leibniz University Hannover, Germany

INTRODUCTION

In soil and groundwater, iron oxide colloids can function as "shuttles" for the transport of contaminants. Colloid transport and retention is strongly influenced by biogeochemical interface characteristics such as iron oxide and organic matter (OM) coatings on the solid matrix. THE OBJECTIVES OF THIS STUDY:

To determine how dissolved organic matter (DOM) adsorption on goethite-coated quartz sand influences the mobility of OM-coated goethite colloids Estimation of DLVO interaction energies to ascertain their capability of predicting OM-coated goethite colloid mobility

MATERIALS & METHODS

Goethite-coated quartz sand: HCl cleaned before coating; covalent Fe-O-Si bonds

Goethite accumulations in quartz grain surface depressions

FLOW COLUMN EXPERIMENTS

Ultrasonic bath

🗲 Column

Autosampler

Injection of colloid pulses: Preliminary to injection, goethite colloids were coated with OM to reverse surface charge from positive to negative. Otherwise, colloids would be attracted by negatively charged clean quartz surfaces.

OM-coated Goethite colloid

OM: IHSS Pahokee Peat Fulvic Acid Standard

Colloidal goethite: Ionic strength: Bayferrox 920 Z 0.1 mmol CaCl₂

DLVO INTERACTION ENERGIES

Lifshitz-van der Waals ($\Delta G(h)^{LW}$) interactions are determined via sessile drop method (SDM) contact angle measurements.

Electrostatic interactions $(\Delta G(h)^{EL})$ are calculated from zeta potentials. Summation of the two components provides the total interaction energy $(\Delta G(h)^{TOT})$.

RESULTS & DISCUSSION

Colloid breakthrough curves:

NO DOM PERCOLATION PRIOR TO COLLOID INJECTION Colloid breakthrough: 0 %

DLVO: Total interaction energy **Attractive** interactions between goethite coatings on sand grains and OM-coated goethite colloids Separation distance (nm

OM-coated

goethite colloid

DOM PERCOLATION PRIOR TO COLLOID INJECTION Colloid breakthrough: 89 %

DLVO: Repulsive interactions between OM-coated goethite coatings on sand grains and OMcoated goethite colloids

Quartz sand grain **Pore scale:**

Negatively charged OM-coated

Pore scale:

OM adsorbs on goethite coatings

goethite colloids are retained on positively charged goethite coatings on the quartz grains

and reverses surface charge to negative; thus, negatively charged OM-coated goethite colloids are highly mobile

CONCLUSIONS

-1000

Our results show: (i) DOM percolation prior to OM-coated goethite colloid injection significantly affects colloid transport, i.e. from 0 % to 89 % (ii) DLVO interaction energies are capable of predicting these OM-coated goethite colloid transport behaviors We conclude that physicochemical surface properties of biogeochemical interfaces, determined by site-specific OM and DOM contents, govern transport and retention of iron oxide colloids in the environment. Future studies are planned in undisturbed natural soil samples at partial water saturation.

> **Acknowledgments:** This work was funded by the NTH Graduate School Geofluxes