

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Jaboticabal

AGROMETEOROLOGICAL MODEL FOR ESTIMATION OF LEAF AREA INDEX IN IRRIGATED PROCESSING TOMATO

Juliana Aparecida dos Santos da Silva¹, Glauco de Souza Rolim, Arthur Bernardes Cecílio Filho, Aluísio Hideki Togoro² UNESP – São Paulo State University, ¹Department of Crop Science; ²Department of Soil Science, 14884-900, Jaboticabal, SP, Brazil e-mail: jujuapsantos@hotmail.com

RESULTS

The leaf area index (LAI) is important information used in crop

modelling. It is obtained by a destructive process, what is sometimes

inconvenient.

OBJECTIVE

The objective of this research was to adjust a mathematical model

that best describes the LAI of irrigated processing tomato, using a non-

destructive method that uses photographs taken in situ and a public

domain software ImageJ.

MATERIALS AND METHODS

Samples were taken at 15, 30, 45, 60, 75, 105, 130 days after

planting. For the photographic method a ruler of 1m² was placed on the

soil in 24 randomized sampling points, and for each point a photograph

was taken. The Gaussian model below was calibrated for LAI estimation

in function of thermal index from planting date.

 $Y = Y_O + A \times e^{-\frac{(X - X_O)^2}{2w^2}}$ Where : $Y_0 = -4,85$ A = 3,09 $X_0 = -4,95$ w = 0,19

ACKNOWLEDGEMENTS

CAPES

Figure 1: A) Adjusted Gaussian model for Leaf Area Index (LAI) estimations; B) Performance analysis of Gaussian model in relation to LI-COR measurements

CONCLUSIONS

The Gaussian model was accurated (MAPE=0,4%) and precise

 $(R^2=0.94).$

