

AMINO ACID N IN HOLOCENE PALEOSOLS AS IDENTIFIED BY IR SPECTROSCOPY AND AMPEROMETRIC TECHNIQUES Teresita Chua-Ona¹, Daniel C. Olk², Najwa Alnsour,³ and Michael L. Thompson¹ Agronomy Department, Iowa State University¹, USDA-ARS National Laboratory for Agriculture and

Environment² and North Carolina State University³

IOWA STATE UNIVERSITY **Department of Agronomy**

INTRODUCTION

Organic matter in paleosols is investigated to infer the mechanisms by which carbon can be preserved over millennial time scales. However, there has been limited research on the nature of nitrogen associated with the stabilized organic matter in paleosols. The most abundant forms of organic N in soils are the amino acids (AA); they are typically bound in soils and may occur as peptides or part of polymeric structures, such as peptidoglycan or glycoproteins. Calderoni and Schnitzer (1984) have reported the abundance of amino acids (AA) in humic materials of Italian paleosols based on their charge properties. Amino acids can also be grouped based on the polarity of the R group attached to their α -carbon atoms. The alkyl group (R) in AA can act as tracer for the assimilation of C that is associated with N.

This study attempts to utilize the characteristics of the R groups attached to AA to track and understand the preservation of N in paleosols. We coupled the pulse amperometric technique with infrared (IR) signatures i identifying how N and consequently C are preserved over millennial scales.

OBJECTIVES

Determine the AA content and distribution based or R groups with age or burial of paleosols

Investigate if IR signals coupled with amino acid identification can provide a better means of understanding the preservation of N as well as C

MATERIALS AND METHODS

I. Study Sites

- Claussen site (along Mill Creek near Lawrence, KS; 740800E, 4326200N)
- Farwell site (along the South Fork of the Big Nemah River in southeast NE; two sub-sites, 64 and 65)
- II. Sample Test Materials
 - Unfractionated soils
 - Clay fractions separated by repeated suspension and exhaustive density separations and then

State - Carles				🤝 Feature	 Radiocarbon Ag 	ge (yr B.P.) Determined on	Wood Charcoal	Fine-grained Deposits				Percent of Tot	tal Amino Acid	N			
gure 1 . The cutbank vealing the soil strati	at the Clau graphy and	ussen sit 1 ages. (:	e with its c from Mand	ross-sec lel et. al.	tional vi , 2006)	ew show	n on the	right,	Figure 3. A clay fraction	mino acid c ns.	listribution ba	ased on the attac	ched R groups of C	Claussen unfrac	ctionated s	oils and the	
Table 1. Select cheClaussen and Farw	emical and vell sites.	physica	l character	istics of	whole so	oil sample	es at the		Tab fract	le 2 . Amino tions.	o acid distribu	ution based on th	ne attached R grou	ps in Farwell v	whole soils	and clay	
Site	Depth	TC	TOC [§]	TN	pH^{\dagger}	Sand	Silt	Clay	Site	Depth	Total N				Total Amino	AA as fraction	
CLAUSSEN	CIII		g kg				g kg		100				Amino Acid-N		_ Acid N	of total N	
Honey Creek (YHC)	0-15	30	14	1.2	7.5	86	531	383				Charged R [¶]	Uncharged R [#]	Apolar R [§]			
Honey Creek (YHC)	25-40	25	10	1.0	7.6	91	604	305		cm			mg kg ⁻¹			%	
Robert Creek (RC)	82-107	13	10	0.8	7.7	22	575	404	WHO	JLE SOIL S	AMPLES	206(51)	145(25)	127(24)	570	20	
Robert Creek (RC)	117-132	12	12	1.0	7.5	11	604	385	03	0-20	1918	290 (31) 199 (55)	143 (23)	137(24)	378 241	50 26	
Gunder Paleosol 1	104-119	5	5	0.5	6.4	3	651	346	03	20-30	1339	188 (JJ) 55 (59)		09(20)	05 05	20 16	
Gunder Paleosol 1	129-144	5	5	0.6	6.5	3	623	375	05	90-155	000	33 (38)	28(29)	12(13)	93 129	10	
Gunder Paleosol 2	262-277	8	4	0.4	7.6	18	572	410	03	155-155	674	04(01) 02(71)	32 (23)	22(10)	138	12	
Gunder Paleosol 2	287-302	10	3	0.4	7.7	13	562	424	65	175 202	720	os (/1) 61 (64)	23(19)	11 (9) 12 (12)	06	20 12	
Gunder Paleosol 3	525-530	7	4	0.6	7.6	13	682	305	03	0.20	1054	$\begin{array}{c} 01 & (04) \\ 125 & (54) \end{array}$	24 (24) 57 (25)	12 (12)	90 220	15	
Gunder Paleosol 3	550-565	6	5	0.6	7.6	6	671	323	04	0-20	1004 707	123 (34)	37(23)	40 (21) 21 (10)	250 162	22	
Gunder Paleosol 3	575-590	10	4	0.5	7.5	30	550	419	04	20-41	(10)	89 (33)	42 (20)	31(19)	103	10	
									04	109-154	010 520	00 (08) 55 (72)	21 (22)	10(10)	90 76	19	
FARWELL									04 CI A	134-130	332	55 (72)	15 (20)	0 (8)	/0	14	
55	0-20	24	21	1.5	7.7	64	680	256	CLA 65	$\begin{array}{c} 1 \mathbf{F} \mathbf{K} \mathbf{A} \mathbf{C} \mathbf{H} \mathbf{C} \\ 0 2 0 \end{array}$	2175	301 (60)	153 (23)	106 (16)	650	10	
55	20-50	17	15	1.3	6.5	45	625	330	65	0-20 20 50	3473	316(64)	133(23) 111(22)	70(14)	/07	15	
55	90-135	7	6	0.8	6.1	13	621	366	65	20-30	1004	123 (60)	111 (22)	70(14) 21(11)	497	10	
5	135-155	16	13	1.0	6.3	6	644	350	65	70-155 125 155	1094	155 (09) 170 (70)	40(20)	21 (11) 27 (11)	193	10	
5	155-175	8	7	0.7	6.4	3	621	375	65	155-155	1490	1/0 (70)	49 (19)	27(11) 22(10)	234	17	
5	175-202	9	8	0.6	6.4	17	644	386	65	133-173	1570	139(72)	40(10)	23(10)	222	10	
	202-217	5	5	0.5	6.6	68	606	326	64	0.20	1413	140(70) 164(62)	40(19)	22(11) 27(14)	207	15	
4	0-20	11	9	1.1	6.9	21	544	435	04 64	0-20	1/10	104(03) 128(62)	57(22)	37(14) 22(15)	230	15	
54	20-41	7	6	0.7	7.3	16	555	429	04	20-41	1090	130(02) 141(79)	30(23)	33(13)	120	20 12	
j 4	109-134	6	5	0.8	8.1	21	627	352	04	109-154	1330	141 (70) $122 (80)$	20(13)	$\begin{array}{c} 11 \\ 0 \\ 6 \end{array}$	100	12	
1	134-156	5	4	0.7	7.8	31	638	331	04 Values	in parentheses re	$\frac{1349}{1549}$	$\frac{123(80)}{144}$	21 (14)	9 (6)	155	11	
/a not available HCl-treated samples 1:1 soil-water									¶ Arg, I # Gly, 7 § Ala, V	Lys, Glu, Asp, His Thr, Ser, Cys, Tyr Val, Pro, Leu, Iso,	Met, Phe						
aussen Clays, no H	IF treatme	nt ¹⁰⁸	2	Farwell	Clays, r	no HF tre	eatment	1035		Val, Pro, Leu, Iso,	Met, Phe						
3700 YHC 0_15 o YHC 25-40 P3 0-15 cm P3 25-40 cm P3 50-65 cm 3000	cm 163 cm n 2000 avelength (cm ⁻¹	1105 2 ₁₄₁₉ 100	911 86969 800 0	3621 3693	3000	65 0-20 cm 65 20-50 cm 65 90-135 cr 65 135-155 c 65 155-175 c 65 175-202 c Wavele	1630 n cm cm 2000 ngth (cm ⁻¹)	1108 91 8 0 1420 1000		Clays at bot acid anions The HF-con cm^{-1} . In add C=C that are increases. A total N in th of the total 1	h sites reveale (Ellerbrock and centrated who lition, the 160 e conjugated w t Farwell, AA e clay fraction N and was 14-	ed IR signatures nd Gerke, 2004; ole soils demonst 00 cm^{-1} signal ob with the C=O. Well sites, AA cor A ranges from 13 ns. Similarly, the -19% of the total	at 1630 cm ⁻¹ , indic Celi et al., 1998) th rated IR signals in tained for HF-treat ncentrations decrea -30% of total N in e AA in the Clauss N in clays (data n	ative of C=O be nat may be asso about the same ed whole soils whole soils wh en whole soils is ot shown).	onds from ciated with region of can be link period of b ile it is 11- ranged from	carboxylic amides. 1600-1650 ed to the urial 19% of the n 10-40%	
Claussen Whole Soils, HF treated					Farwell Whole Soils, HF treated					> In both sites, the percentage of the total AA consisting of apolar R groups was higher in modern than buried soils. Conversely, the percentage of the total AA with charged R groups was higher i the buried than the modern soils.							

freeze-dried

- III. Chemical and Physical Analyses
- Particle size (Gee and Bauder, 1986)
- Total CN analysis via combustion (Vario Micro Cube, Elementar, UK)
- TOC of freeze dried soils following a 24-h 0.5 HCl treatment and 3x water rinses

IV. HF Treatment of Whole Soils

Soils pre-treated with 0.1 M HCl followed by 4x treatment of 5 M HF to dissolve inorganics (Fang et al. 2010) and final water rinses before freezedried

V. Infrared Analysis

- 2 w/w% in IR-grade KBr
- Collected 200 scans from 4000-600 cm⁻¹ via DRIFT using a Nicolet Magna IR spectrometer equipped with a cooled MCT detector
- Reported scans were background corrected and smoothed
- VI. Amino Acid Analysis (Martens and Loeffelmann, 2003)
 - 250 mg soil (<0.1 mm)/200 mg freeze-dried clay with 2 mL 4 M methanesulfonic acid (containing 0.2% tryptamine); soil-acid mixture autoclaved @ 121°C for 16 h (Olk et al. 2008)
 - Digest was diluted and then centrifuged before pH adjusted to 4.0-6.0; brought to final 10-mL volume
 - Ten-fold diluted with water, and filtered through 0.2 µm nylon filter

Charged R - Arg, Lys, Glu, Asp, His • Uncharged R - Gly, Thr, Ser, Cys, Tyr • Apolar R - Ala, Val, Pro, Leu, Iso, Met, Phe

soils from Claussen and Farwell sites.

The qualitative analysis of AA has the potential in elucidating the historical sequence of the preservation of N as well as C in these Holocene paleosols.

ACKNOWLEDGEMENTS

This study is supported by the Sedimentary Geology and Paleobiology Program of the National Science Foundation under award EAR 1226949 (Iowa State University). Additional funding was provided by the Department of Agronomy, Iowa State University. The authors would like to thank Mr. Terry Grimard for the analysis of the amino acids via the HPLC pulse-amperometric detection and Mr. Sam Rathke for the total CN analysis. Sincere gratitude goes to Dr. Art Bettis III, Dr. Rolfe Mandel, and Jessica Monson for collection of the soil samples.