INTRODUCTION

- Caragana arborescens (caragana) is a woody legume in the family Fabaceae. It is native to north-eastern Europe and central Asia and was introduced to North America in 1752
- ✤ In Saskatchewan, there exists a long history of the cultivation of caragana for mitigating wind erosion. Its tolerance to cold and drought, height of 4-6 m, long lifespan and ability to fix nitrogen make it a good choice for shelterbelts
- Nitrogen-fixation in caragana is around 335 µg N g soil⁻¹ h⁻¹ and about 80% of total N in caragana are derived from N-fixation (Moukoumi et al., 2013). Nitrogen inputs derived from N-fixation can exceed plant N requirements which leads to N₂O emissions
- Cultivation of shelterbelt trees has been promoted as having the potentials for mitigating atmospheric CO_2 ; however, the impact of N-fixation in caragana shelterbelts on N_2O emissions is unknown.

OBJECTIVES

> To investigate the contribution of caragana shelterbelt trees on soil N_2O emissions

MATERIALS AND METHODS

Experimental layout

- A caragana shelterbelt was identified in each of the study sites (Fig 1). Nearby non N-fixing shelterbelts (conifers) were equally identified. The age of the shelterbelts range between 32 and 40 years.
- Four replicate chamber bases were installed in the middle of the shelterbelts and were used to monitor N_2O emissions in 2013.

UNIVERSITY OF SASKATCHEWAN Mature Caragana Shelterbelts On Prairie Soils: Are They Environmental Assets?

C. Amadi, R. Farrell & K. Van Rees Department of Soil Science, University of Saskatchewan, Saskatoon, SK. Canada

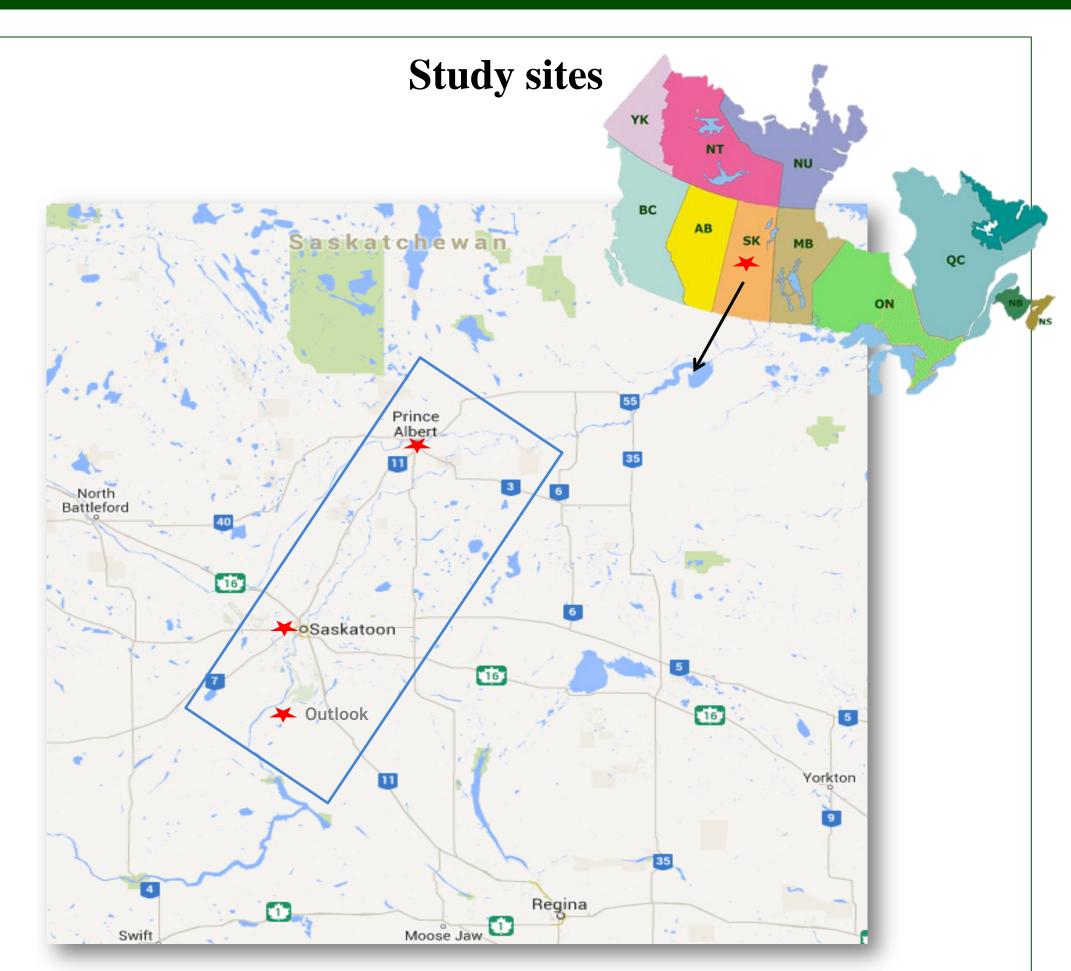


Figure 1. Map of study site

Gas and soil sampling

- Gas samples from the chamber headspace were collected weekly and analyzed for N₂O using a gas chromatograph (Bruker 450-GC)
- Four replicate soil samples were collected from each treatment and analyzed for N content, SOC, pH and texture

RESULTS AND DISCUSSION

Soil properties

- \clubsuit In all sites, soil NO₃-N was greater in caragana shelterbelts (0.52 to 1.69 mg L⁻¹) than in the non Nfixing shelterbelt (0.04 to 0.88 mg L^{-1}) (Table 1)
- \clubsuit The increased NO₃-N in caragana shelterbelts may be attributed to accrual and microbial decomposition of N-rich plant residues, roots and old nodules.
- ✤ Increased soil NO₃-N may result in gaseous N emission due to increased potential for biological denitrification; especially when soil conditions are favourable for microbial activities.

Locati

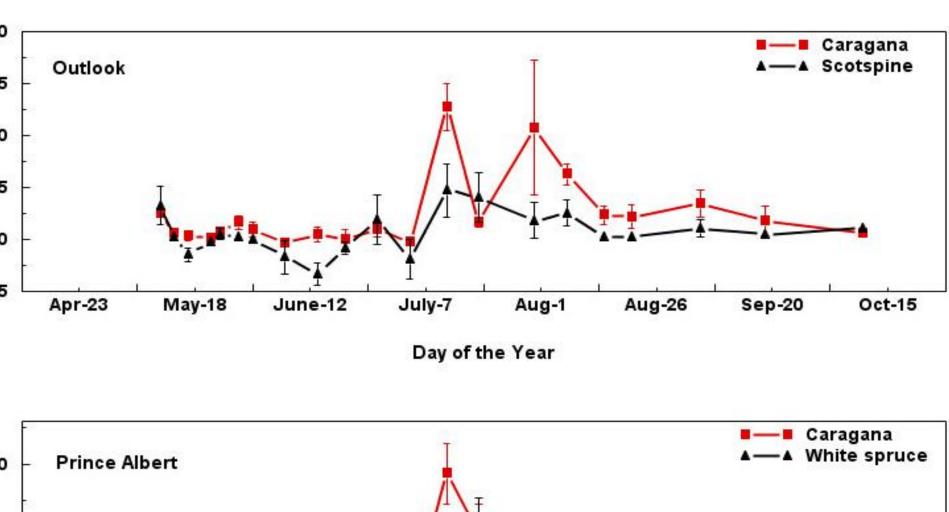
Prince Alber

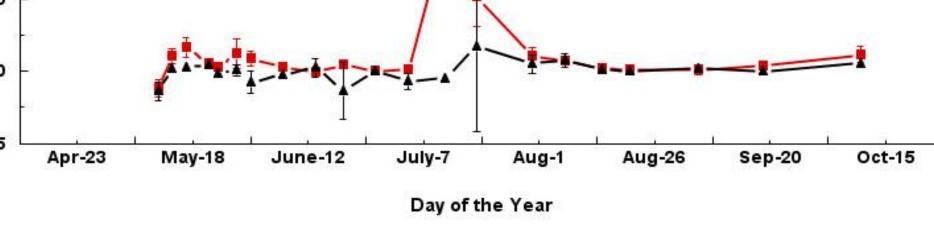
Saskat

Outlo

0 0

÷


(15 '9 면 역 10 0 z o fi


0 9 C

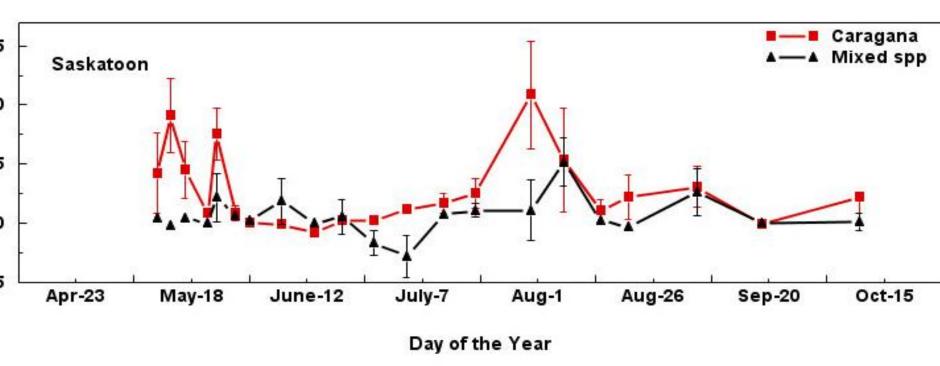
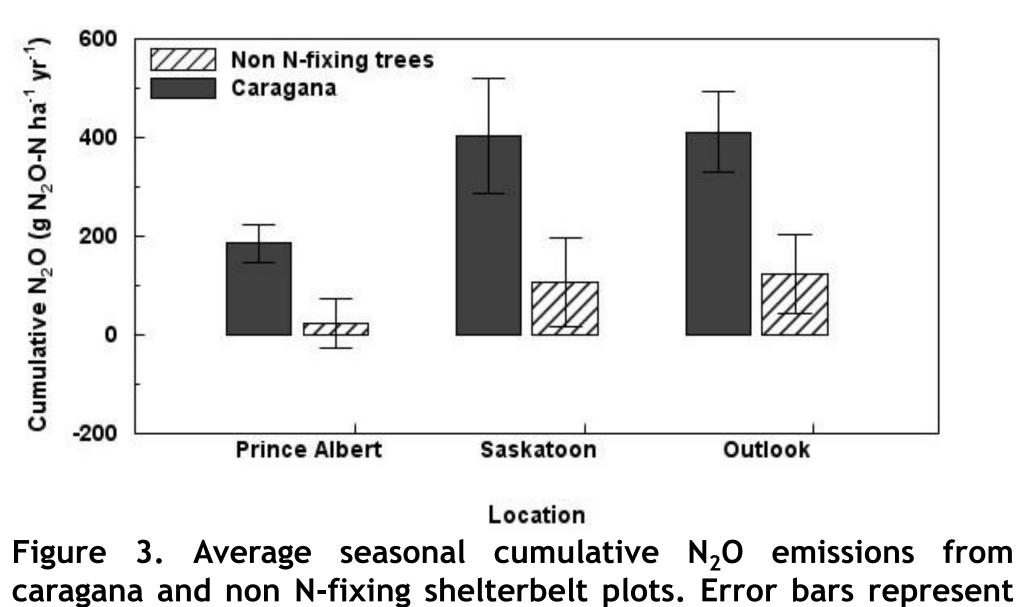

standard deviation

Table 1. Summary of soil properties (0-15 cm) from caragana and non N-fixing shelterbelt plots


tion	Treatment	Texture –	OC	ΤN	NH ₄ -N	NO ₃ -N	BD	
			Mg ha⁻¹				(Mg m ⁻³)	рН
e	Caragana,	Sandy loam	71.2	6.2	0.53	0.78	1.29	5.47
rt	white spruce	Sandy loam	68.8	5.9	0.77	0.06	1.30	4.78
atoon	Caragana	Clay	58.2	5.6	0.75	2.54	0.93	7.45
ook	mixed species	Clay	61.3	4.9	0.69	1.32	0.98	7.42
	Caragana	Sandy loam	31.3	2.7	0.42	0.86	1.20	6.24
	Scots pine	Sandy loam	31.2	2.8	0.65	0.53	1.03	7.13

Nitrous oxide emissions

We acknowledge collaboration and support from CLC, CSIDC and University of Saskatchewan Horticulture Centre. Special thanks to Matt Jones, Doug Jackson, Frank Krignen and Darin Richman for help with field and lab studies. Funding was provided by Agriculture and Agri-Food Canada – Agricultural Greenhouse Gas Program (AGGP)

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Seasonal cumulative N₂O emissions from caragana shelterbelt plots were greater (183 to 409 g N₂O-N ha⁻¹ yr⁻¹) than the non N-fixing plots (22 to 121 g N_2O-N ha⁻¹ yr⁻¹) (Fig 3).

Maximum daily N₂O emissions occurred during early spring and summer (July to August) (Fig 2).

These findings are in agreement with Izaurralde et al. (2004) and may be attributed to the presence of residual mineral N under the elevated soil moisture conditions in the spring and favourable conditions for microbial activity during the summer in the caragana.

CONCLUSION

 \succ The study show potential increase of NO₃-N and subsequent emissions of gaseous N in caragana shelterbelts in Saskatchewan.

> Although N-fixing trees may be beneficial for carbon sequestration, they may be significant sources of atmospheric N_2O emissions.

> The success of agroforestry systems in mitigating climate change will depend on proper understanding of trade-offs between C sequestration and the emission of trace gases such as N_2O .

> Further research is needed on sustainable ways of designing shelterbelt tree species in such a way as to maximize the N-fixing feature of caragana trees while reducing potentials for N₂O emissions

REFERENCES

Izaurralde, R.C., R.L. Lemke, T.W. Goddard, B. McConkey and Z. Zhang. 2004. Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Sci. Soc. Am. J. 68:1285-1294.

Moukoumi, J., R.K. Hynes, T.J. Dumonceaux, J. Town, and N. Belanger. 2013. Characterization and genus identification of rhizobial symbionts from Caragana arborescens in western Canada. Can. J. Microbiol.

ACKNOWLEDGEMENT