

MACROAGGREGATES CARBON STORAGE POTENTIAL IN BRAZILIAN OXISOL UNDER LONG-TERM NO-TILL

⁽¹⁾ Av. Carlos Cavalcanti, 4748, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil

INTRODUCTION

✓ In long-term no-till associate with cropping systems to keep the soil permanent covered leads to increase carbon (C) into the macroaggregates

✓ The potential of C storage in macroaggretes has a lack of knowledge in terms of the relationship between texture and soil organic carbon fractions.

MATERIALS AND METHODS

Textural	Depth	Attributes	Size cla	asses of	f aggre	gates,	mm	
	om	(0/)	10.0	0 1	1 0	0	105	

POC (\triangle POC§) with delta SR (stratification ratio)§§.

-		-			
Pools	Textural	Classes of	Equation	R ²	Significance level
(typo)	Class	agaragatas (mm)			

Class	CIII	(%)	19-8	8-4	4-2	2-1	1-0.5	0.5 - 0.25
Oxisol	0-5	Aggregate size class	75.85	2.70	2.42	2.14	3.60	4.57
clay		TOC in each size class	86.36	2.66	2.60	2.27	2.97	3.15
	5-20	Aggregate size class	74.63	2.70	2.25	2.47	3.97	4.35
		TOC in each size class	85.59	2.80	2.34	2.43	3.62	3.23
Oxisol	0-5	Aggregate size class	71.75	2.85	2.43	2.25	3.39	4.72
Sand-clay		TOC in each size class	83.98	3.06	3.00	2.75	3.53	3.69
	5-20	Aggregate size class	73.09	2.99	2,56	2.44	3.12	3.70
		TOC in each size class	85.93	3.16	2.75	2.62	2.92	2.61

	01855	ayyreyates (mm)			
TOC	Oxisol	19-8	Δ TOC = 5.80 + 6.71 Δ SR	0.43	0.02
	Sand-clay	8-4	Δ TOC = -0.76 + 4.98 Δ SR	0.31	0.06
		4-2	Δ TOC = -1.16 + 6.10 Δ SR	0.36	0.04
		2-1	Δ TOC = -193 + 1.89 Δ SR	0.12	0.26
		1-0.5	Δ TOC = -0.28 + 3.96 Δ SR	0.25	0.09
		0.5-0.25	Δ TOC = -0.68 + 5.12 Δ SR	0.62	0.002
	Oxisol	19-8	Δ TOC = 1.49 + 7.31 Δ SR	0.40	0.02
	clay	8-4	Δ TOC= 1.08+ 4.14 Δ SR	0.16	0.18
		4-2	Δ TOC = -2.26 + 1.56 Δ SR	0.09	0.35
		2-1	Δ TOC = -2.76 + 4.70 Δ SR	0.14	0.21
		1-0.5	Δ TOC = -0.89 + 2.53 Δ SR	0.03	0.55
		0.5-0.25	Δ TOC = -0.55 + 3.60 Δ SR	0.40	0.02
POC	Oxisol	19-8	Δ POC = 0.18 + 1.60 Δ SR	0.28	0.07
	sand-clay	8-4	Δ POC = -0.83 + 1.78 Δ SR	0.18	0.17
		4-2	Δ POC = 0.49 + 2.46 Δ SR	0.64	0.001
		2-1	Δ POC = -0.20 + 1.09 Δ SR	0.17	0.18
		1-0.5	Δ POC = -0.36 + 1.59 Δ SR	0.47	0.01
		0.5-0.25	Δ POC = 1.26 + 2.74 Δ SR	0.54	0.006
	Oxisol	19-8	Δ POC = -1.70 + 3.23 Δ SR	0.41	0.01
	clay	8-4	Δ POC = -0.77 + 2.37 Δ SR	0.25	0.09
		4-2	Δ POC = -1.46 + 5.20 Δ SR	0.49	0.01
		2-1	Δ POC = -0.29 + 0.79 Δ SR	0.04	0.51
		1-0.5	Δ POC = -0.38 + 2.92 Δ SR	0.44	0.01
		0.5-0.25	Δ POC = -0.15 + 2.77 Δ SR	0.56	0.005

Figure 3. Schematic diagram illustrating the effect of long-term no-till on soil macroaggregation.

§ Delta TOC (Δ TOC) and delta POC (Δ POC) represents the accumulated C calculated by difference from stock: C stock in E₂ - C stock in E₁; §§delta SR (0-5: 5-20 cm) represents the variation of SR between the $E_2 - E_1$.

> The 8-19 mm size macroaggregates represented 86.0 and 84.9 % of soil mass of all aggregates I size classes of sand-clay and clay Oxisol respectively.

> A close linear relationship between C sequestration rate and the soil C stratification ratio was R²=0.78^{**} and R²=0.81^{**} for sand-clay and clay texture, respectively.

 \succ Our results support that the statement of macroaggregation is the main way to sequester C.