Characterization of Quality Protein and Normal Maize Accessions from a Breeding Program: Identification of Variety-Diagnostic Markers G. B. Daniel¹, K. K. Nkongolo¹, K. A. Mbuya², P. Michael¹ and G. Theriault¹ ¹Department of Biology, Laurentian University, Sudbury, Ontario, Canada; ²National Institute for Agronomic Study and Research, Kinshasa, DR Congo

INTRODUCTION

Maize is a major cereal crop for both livestock and human globally [1]. Several millions of people particularly in developing countries derive their protein and daily calorie requirements from maize [2]. It accounts for up to 15 to 56 % of total daily calories in diets of people in 25 developing countries [1]. In these countries particularly African and Latin American, animal protein is scarce, expensive and unavailable to vast majority of the society [3]. Normal maize varieties are deficient in two essential amino acids, lysine and tryptophan required for human nutrition [3,4]. Tryptophan and lysine content in normal maize is 2% which is less than half the amount recommended for human nutrition.

OBJECTIVES

- To determine the amino acid profile of MUDISHI 3.
- To develop variety-diagnostic molecular markers that could be used to specifically track this accession in a maize breeding program

MATERIALS AND METHODS

Selection

The main selection criteria include, spike size, resistance to mildew and maize streak virus, grain yield, nutritional quality (lysine, tryptophan and other amino acid contents), and organoleptic characteristics

Molecular Analysis

RESULTS

Agronomic Characteristics

- MUDISHI 3, a new maize variety with white grain color was released in 2011 and it is adapted to all the maize growing regions in western, central and southern DR-Congo.
- It is highly resistant to downy mildew and to lodging and resistant to maize streak virus.

Protein Analysis

- The crude protein content were 14 %, 9.9 % and 10 % in MUDISHI 3, Salongo 2 and DMR-ES-W, respectively.
- Overall, the total basic acids, which include lysine, arginine, and histidine constituent 11.4 % of the total amino acids for MUDISHI 3.

Molecular Analysis

• A variety-diagnostic marker of 480 bp size was identified

Figure 2: ISSR amplification of maize accessions DNA with primer HB 15.

0 1 2 3 4 5 6 7 8 9 10

Figure 3: Digested plasmid gel electrophoresis with transformed bacteria clones.

CCGCGAAGAT	ACCCTGACGA	TTCTGCGTGA	AGAGCAGGTT	GAACGTTGCG	GCGGCGTGCT	GCACTGCTTC
GCTCGTTCCT	GGAACATATC	CGTACCGGTA	TTGCGCTGAA	CAAACCGA <u>TC</u>	ATTGTTCACA	<u>CCCGTGAT</u> GC
GTGGTGGTGG	CTCTGGGGGA	AACCGgGCTG	GATTATCACT	ATCAGCCAGA	AACAAAAGAT	CAGCAGCAGC

- Total genomic DNA from maize seedlings were extracted using the CTAB protocol.
- A total of 24 ISSR and 46 RAPD primers synthesized by Invitrogen were used for DNA amplification.

Protein and Amino Acid Analysis

 Analyses were conducted at the University of Missouri Agricultural Experiment Station Chemical Laboratories.

Varieties	Origin	Year	Туре
GPS-5	INEAC-Gandajika	_	NORMAL
SALONGO-2**	INERA- Gandajika	1976	NORMAL
DMR-ESR-W**	IITA-Ibadan	1994	NORMAL
LOCALE-2	Farmers- Gandajika	-	NORMAL
AK9331-DMRESR-Y	IITA-Ibadan	1994	NORMAL
MUS-1**	INERA	1996	NORMAL
LOCALE-1	Farmers- Gandajika	-	NORMAL
DMR-ES-W	IITA –Ibadan	1994	QPM
QPM-LONGE 5***	NARI-Uganda	2008	QPM
ECAQVE-3	CIMMYT-Kenya	2008	QPM
ECAQVE-4	CIMMYT-Kenya	2008	QPM
ECAQVE-6	CIMMYT-Kenya	2008	QPM
QPM-SRSYNTH***	CIMMYT-Kenya	2008	QPM
SUSUMA	CIMMYT-Kenya	2008	QPM
MUDISHI 1	INERA-DR Congo/LU	2010	QPM
MUDISHI 3	INERA-DR Congo/LU	2012	QPM

- from amplified products generated by the ISSR HB 15 primer with MUDISHI 3 DNA sample.
- It represents an excellent tool for molecular breeding in the DR-Congo breeding program.

Table 2: Protein and amino acid profile

	MUDISHI 3		Salongo 2		DMR-ES- W QPM		LSD
Amino							
acids	W/W	%	W/W	%	W/W	%	
Taurine	0.04	(0.31)	0.03	0.31	0.03	0.31	0.08
Hydroxyproline	0.11	(0.84)	0.03	0.31	0.03	0.31	0.09
Aspartic Acid	0.92	(7.05)	0.60	6.26	0.59	6.03	1.09
Threonine	0.49	(3.75)	0.34	3.55	0.35	3.58	0.30
Serine	0.65	(4.98)	0.44	4.59	0.44	4.49	0.88
Glutamic Acid	2.24	(17.2	1.89	19.71	1.93	19.71	2.04
Proline	1.14	(8.74)	0.86	8.97	0.90	9.19	1.1
Lanthionine	0.00	(0.00)	0.00	0.00	0.00	0.00	
Glycine	0.73	(5.59)	0.35	3.65	0.36	3.68	0.8
Alanine	0.94	(7.20)	0.75	7.82	0.76	7.76	1.4
Cysteine	0.32	(2.45)	0.20	2.09	0.21	2.15	0.8
Valine	0.71	(5.44)	0.47	4.90	0.48	4.90	0.9
Methionine	0.24	(1.84)	0.18	1.88	0.20	2.04	0.2
Isoleucine	0.49	(3.75)	0.36	3.75	0.36	3.68	0.8
Leucine	1.47	(11.3)	1.31	13.66	1.33	13.59	1.6
Tyrosine	0.33	(2.53)	0.26	2.71	0.26	2.66	0.3
Phenylalanine	0.63	(4.83)	0.50	5.21	0.50	5.11	1.0
Hydroxylysine	0.03	(0.23)	0.02	0.21	0.02	0.20	0.03
Ornithine	0.01	(0.08)	0.01	0.10	0.01	0.10	0.01
Lysine	0.47	(3.60)	0.28	2.92	0.28	2.86	0.6
Histidine	0.35	(2.68)	0.27	2.82	0.28	2.86	0.7
Arginine	0.67	(5.13)	0.39	4.07	0.41	4.19	1.0
Tryptophan	0.07	(0.54)	0.05	0.52	0.06	0.61	0.08
Total	13.05		9.59		9.79		
Crude Protein*	14.20		9.89		10.14		

ACTGAGGATC AGCCCACCGC AGCAAAACTG CTGGATATGG GCTTTTACAT CTCTTTTTCC GGCATCGTCA CATTCCGCAA TGCCGAGCAG TTACGTGAAG CCGCACGCTA TGTGCCGCTG GATCGGATGC TGGTGGAAAC GGATTCGCCT TATCTGGCAC CGGTGCCTTT CCGTGGTAAA GAGAATCAGC CCGCTTATAC GCGCGATGTT GCCGAATATC TGGCTATCCT GAAAGGG<u>GTG GATTTAGAAA CGCTGGC</u>AGC CACCACCAC

Figure 4: Consensus sequence of variety-diagnostic ISSR marker of 480 bp from MUDISHI 3 generated by ISSR primer HB 15.

CONCLUSIONS

Protein analysis data revealed that MUDISHI 3 is a QPM variety that is distinct from its original population (DMR-ES-W).

• One primer revealed a diagnostic marker for QPM MUDIHI 3.

Primers flanking the diagnostic marker sequence were developed.

• Further analysis of several other ISSR and RAPD primers is required to achieve the main goal of developing variety-specific markers in the targeted breeding program.

AKNOWLEDGEMENT

The authors are grateful to the Canadian International Development agency (CIDA) for financial support.

REFERENCES

 Prasanna, B.M, Vasal, S.K., Kassahun, B., and Singh, N.N. 2001. Curr. Sci. 81(10): 1308-1318
Mbuya, K., Nkongolo, K.K., Kalonji-Mbuyi, A. 2011. Int. J. Plant Breed. Genet. 5(4): 317-327
FAO Agrostat, Food Balance Sheets, FAO, Rome, Italy, 1992
Gaziola, S.A., Alessi, E.S., Guimaraes, P.E.O., Damerval, C., Azevedo, R.A. 1999. J. Agric. Food Chem. 47: 1268-1275.

