Low-molecular-weight Organic Acids As a Phosphorus Fertilizer Alternative for Vegetable Production in Calcareous Soil Regions Dag Osorio, B.S., Ken Mix, Ph. D. (Graduate Advisor)

TEXAS **UNIVERSITY**

The rising STAR of Texas

Introduction

While current applications of phosphorus (P) fertilizer have played a significant role in providing sufficient harvest demands for global food production, industrial agriculture has altered the P cycle by relying on mined phosphate rock (PR) as a non-renewable fertilizer resource (Cordell & White 2011). On the other hand, most soils frequently contain enough native P for crop production (Jones et al. 2011). These soils may also contain low-molecular-weight organic acids (LMWOAs) in the rhizosphere that are used by plants and microorganisms for P-nutrient acquisition (Wang et al. 2008). Even so, high pH and high P fixation rates occur in arid soils with high concentrations of calcium carbonate (CaCO₃) parent material (Marschner 2002). The purpose of this study was to mimic LMWOAs commonly found in the soil rhizosphere for vegetable production. By examining their ability to solely solubilize native P from calcareous soils in semi-arid land regions LMWOAs

Materials & Methods

may render a possible alternative for P fertilizer applications in future crop production systems.

[Figure 1, Tarpley Soil Test (mg/kg)]

As a highly dependent P nutrient crop, S. *melongena* (eggplant) was used in a pot study within a complete randomized block design using two distinct soil types native to the Central Texas region. In order to determine nutrient availability and appropriate fertilizer applications, soil samples were analyzed prior to the study (Fig. 1 & Fig. 2). Soils included a Houston Black (HvB) series Vertisol and Tarpley (TaB) series Mollisol for vegetable production. Each soil pot was treated individually with molar concentrations of oxalic or citric acid (0.1 mM kg⁻¹, 100 mM kg⁻¹). Controls received the recommended triple superphosphate (TSP) $[Ca(H_2PO_4)_2]$ application from soil analysis results. Equal parts of urea (N) $[CO(NH_2)_2]$ fertilizer was applied to all soil pots. During the growing period blooms were recorded for each treatment (Fig. 3 & Fig. 4). Fruit was harvested and measured to determine yield based on weight (g). P nutrient availability from soil samples of each pot was measured using a spectrophotometer (mg/kg). Two repeated-measures factorial MANOVAs further determined statistical significance between treatments in each soil for P nutrient availability and fruit production effects over time, p< 0.05.

Results

Fruit harvest totals (g) at the end of nine weeks for Houston Black soil showed citric acid 100 mM kg⁻¹ as most effective for yield, while TSP treatment yielded best for Tarpley soil (Fig.5; Fig. 7; Fig. 9). MANOVA results for fruit yield (g) indicate harvest [Wilks' A=.323, F(2,129)= 135.34, p=.000], harvest*soil class [Wilks' Λ =.555, F(2, 129)= 51.80, p=.000], harvest*treatment [Wilks' Λ =.826, F(8, 258)= 3.244, p=.002], and harvest*soil class*treatment [Wilks' Λ=.800, F(8, 258)= 3.795, p=.000] significantly affected yield over time (Table 1). Soil test totals (mg/kg⁻¹) for treatments revealed that TSP treatment provided most P-nutrient availability for both soils (Fig. 6; Fig. 8; Fig. 10). MANOVA results indicate that soil test [Wilks' Λ =.834, F(2,129)= 12.838, p=.000], soil test*soil class [Wilks' Λ =.846, F(2,129)= 11.753, p=.000], soil test*treatment [Wilks' A=.735, F(8,258)= 5.368, p=.000] and interaction between soil test*soil class*treatment [Wilks' Λ=.626, F(8,258)= 8.507, p=.000] significantly affected soil test results over time (Table 2).

Discussion

Total yield comparisons between LMWOA treatments and TSP treatment over time showed no significant differences in yield for Houston Black soils, demonstrating promising results for LMWOAs as a P fertilizer substitute in production (Table 3). This was likely due to relatively high CaCO3 and Ca⁺ (8295 mg/kg⁻¹) mineral content, which easily reacted with LMWOA treatments to render soluble P nutrients through dissolution and anion exchange of existing calcium phosphate compounds as shown in a study by Jones and Darrah (1994). Similar P-test results over time showed no significant difference between treatments for Houston Black soil (Table 4), which correlate to a study by Khademi et al. (2010) in which all concentrations of citric and oxalic were effective while oxalic acid provided the most P from soil tests. As for Tarpley soil, results signify LMWOAs as a relatively weak P substitute, possibly due to buffering capacity of the soil and a negative reaction from excess iron release for oxalic 100 mM kg⁻¹ treatment. According to Marschner (2002), pH of calcareous soils is dependent on the presence of $CaCO_3$ to buffer soils ranging between 7.5-8.5 pH. Nevertheless, acquiring native P from soil using LMWOAs is a method that merits further investigation as many recent studies using LMWOAs have shown to have a correlative effect on P uptake by plants (Strom et al. 2002; Allan et al. 2003; Jones et al. 2011) but research on sole LMWOA use in crop production is scarce.

Objectives

Determine the effects of LMWOA applications as a substitute for conventional P fertilizer applications by:

- Comparing total fruit yield (g) and bloom count of Solanum melongena grown solely with LMWOA treatment (mM kg) for P release versus TSP fertilizer treatment.
- Investigating significant differences in S. *melongena* production between treatments as measured by P nutrient availability (mg/kg) in each soil.

(Figure 3, Mollisol Bloom Count)

(Table 2. MANOVA Test, Soil Test)

				E.	
Trect	alle	A	sis dr	Ordr	Sig
P-test	0.834	12.838	2	129	0.000
P-test x Soil Class	0.846	11.753	2	129	0.000
P-test x Treatment	0.735	5.368	8	258	0.000
P-test x Soil Class x Treatment	0.626	8.507	8	258	0.000

(Table 4. Post-Hoc Test, Yield)

	Mcan	Stan		Lon	Up.				Mean	Stan		Lo.
	Measu Ville	Ten-	, Eg	[₩] ¢ S:	Bou, Der	Sou.			Measu Diffe	and	L.	4 (P.
Hanatan Dia da	400 V	^с е	°O _r	<i>.</i>	·7¢	N.C.			410	vc _o	TOP	
citric 0.1 mM	citric 100 mM	8 471	17 773	0.634	13 633	26 600		Houston Black	··· 100 M	0.022	0.210	0.004
	ovalic 0.1 mM	-0.4/1	17.773	0.034	-43.033	20.090		citric 0.1 mM	citric 100 mM	-0.923	0.318	0.004
	oxalic 100 mM	2 252	17 773	0.899	-32 909	37 414			oxalic 0.1 mivi	-0.339	0.318	0.093
	TSP	17 088	17 773	0.338	-18 073	52 249	l'étert :			-1.175	0.318	0.000
citric 100 mM	citric 0.1 mM	8.471	17.773	0.634	-26.690	43.633		citric 100 mM	citric 0.1 mM	0.923	0.318	0.000
	oxalic 0.1 mM	23.383	17.773	0.191	-11.778	58.545			oxalic 0.1 mM	0.384	0.318	0.001
	oxalic 100 mM	10.724	17.773	0.547	-24.437	45.885			oxalic 100 mM	-0.252	0.318	0.431
	TSP	25.560	17.773	0.153	-9.602	60.721			TSP	-0.914	0.318	0.005
oxalic 0.1 mM	citric 0.1 mM	-14.912	17.773	0.403	-50.073	20.249	1 . K .	oxalic 0.1 mM	citric 0.1 mM	0.539	0.318	0.093
	citric 100 mM	-23.383	17.773	0.191	-58.545	11.778			citric 100 mM	-0.384	0.318	0.230
	oxalic 100 mM	-12.660	17.773	0.478	-47.821	22.502			oxalic 100 mM	-0.636	0.318	0.048
	TSP	2.176	17.773	0.903	-32.985	37.337			TSP	-1.299	0.318	0.000
oxalic 100 mM	citric 0.1 mM	-2.252	17.773	0.899	-37.414	32.909		oxalic 100 mM	citric 0.1 mM	1.175	0.318	0.000
	citric 100 mM	-10.724	17.773	0.547	-45.885	24.437			citric 100 mM	0.252	0.318	0.431
	oxalic 0.1 mM	12.660	17.773	0.478	-22.502	47.821			oxalic 0.1 mM	0.636	0.318	0.048
	TSP	14.836	17.773	0.405	-20.325	49.997			TSP	-0.663	0.318	0.039
TSP	citric 0.1 mM	-17.088	17.773	0.338	-52.249	18.073		TSP	citric 0.1 mM	1.838	0.318	0.000
	citric 100 mM	-25.560	17.773	0.153	-60.721	9.602			citric 100 mM	0.914	0.318	0.005
	oxalic 0.1 mM	-2.176	17.773	0.903	-37.337	32.985			oxalic 0.1 mM	1.299	0.318	0.000
T	oxalic 100 mM	-14.836	1/.//3	0.405	-49.997	20.325		-	oxalic 100 mM	0.663	0.318	0.039
l arpley	aitria 100 maM	26767	17 772	0.041	1 605	71.029		Tarpley	· · · 100	0.1.40	0.010	0.661
CITIC 0.1 MIVI	ovalia 0.1 mM	30./0/ 2.871	17.772	0.041	1.003	71.928		citric 0.1 mM	citric 100 mM	0.140	0.318	0.661
	oxalic 100 mM	2.071	17.773	0.872	-32.290	131 283			oxalic 0.1 mM	-0.447	0.318	0.163
	TSP	-56 738	17.773	0.000	-91 899	-21 577	11.11			-0.127	0.318	0.091
citric 100 mM	citric 0.1 mM	-36 767	17 773	0.002	-71 928	-1 605		citric 100 mM	citric 0.1 mM	-5.284	0.318	0.000
	oxalic 0.1 mM	-33 895	17 773	0.059	-69.056	1.005			ovalic 0.1 mM	-0.140	0.318	0.001
	oxalic 100 mM	59.355	17.773	0.001	24.194	94.516	1 I		oxalic 100 mM	-0.267	0.318	0.000
	TSP	-93.505	17.773	0.000	-128.666	-58.344			TSP	-3.424	0.318	0.000
oxalic 0.1 mM	citric 0.1 mM	-2.871	17.773	0.872	-38.033	32.290		oxalic 0.1 mM	citric 0.1 mM	0.447	0.318	0.163
	citric 100 mM	33.895	17.773	0.059	-1.266	69.056			citric 100 mM	0.587	0.318	0.068
	oxalic 100 mM	93.250	17.773	0.000	58.089	128.411	1.5 20		oxalic 100 mM	0.320	0.318	0.317
	TSP	-59.610	17.773	0.001	-94.771	-24.448	. C. 1. 1. 1. 1.		TSP	-2.838	0.318	0.000
oxalic 100 mM	citric 0.1 mM	-96.121	17.773	0.000	-131.283	-60.960	122258	oxalic 100 mM	citric 0.1 mM	0.127	0.318	0.691
	citric 100 mM	-59.355	17.773	0.001	-94.516	-24.194	279.6		citric 100 mM	0.267	0.318	0.404
	oxalic 0.1 mM	-93.250	17.773	0.000	-128.411	-58.089			oxalic 0.1 mM	-0.320	0.318	0.317
	TSP	-152.860	17.773	0.000	-188.021	-117.698			TSP	-3.158	0.318	0.000
TSP	citric 0.1 mM	56.738	17.773	0.002	21.577	91.899	1	TSP	citric 0.1 mM	3.284	0.318	0.000
	citric 100 mM	93.505	17.773	0.000	58.344	128.666			citric 100 mM	3.424	0.318	0.000
	oxalic 0.1 mM	59.610	17.773	0.001	24.448	94.771	1		oxalic 0.1 mM	2.838	0.318	0.000
	oxalic 100 mM	152.860	17.773	0.000	117.698	188.021			oxalic 100 mM	3.158	0.318	0.000

(Table 4. Post-Hoc Test, Soil Test)									
	Mean Diffe Measure	Standard	TETTOF	Lower Sig	Bound Cipper	Bound			
Houston Black									
citric 0.1 mM	citric 100 mM	-0.923	0.318	0.004	-1.553	-0.293			
	oxalic 0.1 mM	-0.539	0.318	0.093	-1.169	0.091			
	oxalic 100 mM	-1.175	0.318	0.000	-1.805	-0.545			
	TSP	-1.838	0.318	0.000	-2.467	-1.208			
citric 100 mM	citric 0.1 mM	0.923	0.318	0.004	0.293	1.553			
	oxalic 0.1 mM	0.384	0.318	0.230	-0.246	1.014			
	oxalic 100 mM	-0.252	0.318	0.431	-0.881	0.378			
	TSP	-0.914	0.318	0.005	-1.544	-0.285			
oxalic 0.1 mM	citric 0.1 mM	0.539	0.318	0.093	-0.091	1.169			
	citric 100 mM	-0.384	0.318	0.230	-1.014	0.246			
	oxalic 100 mM	-0.636	0.318	0.048	-1.266	-0.006			
	TSP	-1.299	0.318	0.000	-1.928	-0.669			
oxalic 100 mM	citric 0.1 mM	1.175	0.318	0.000	0.545	1.805			
	citric 100 mM	0.252	0.318	0.431	-0.378	0.881			
	oxalic 0.1 mM	0.636	0.318	0.048	0.006	1.266			
	TSP	-0.663	0.318	0.039	-1.293	-0.033			
TSP	citric 0.1 mM	1.838	0.318	0.000	1.208	2.467			
	citric 100 mM	0.914	0.318	0.005	0.285	1.544			
	oxalic 0.1 mM	1.299	0.318	0.000	0.669	1.928			
	oxalic 100 mM	0.663	0.318	0.039	0.033	1.293			

-0.490 0.770 -1.076 0.183

-0.757 0.503

-3.914 -2.654 -0.770 0.490

-1.216 0.043 -0.897 0.363 -4.054 -2.794

-0.183 1.076 -0.043 1.216

-0.310 0.950 -3.468 -2.208

-0.503 0.757

-0.363 0.897 -0.950 0.310

-3.787 -2.528

2.654 3.914

2.794 4.054

2.208 3.468

2.528 3.787

References

Allan D.L., Vance C.P., Uhde-Stone C. (2003). Phosphorus Acquisition and Use: Critical Adaptions by Plants for Securing a Nonrenewable Resource. *New Phytologist*, 157, 423-447.

- Cordell, D, White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability, 3, 2027-49.
- Jones, D.L., Burger E., Wenzel, W.W. (2011). Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. *Plant Soil*, 341, 363-382.
- Jones, D.L., Darrah, P.R. (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. *Plant and Soil*, 166, 247-257.
- Khademi, Z., Jones, D.L., Malakouti, M.J., Asadi, F. (2010). Organic acids differ in enhancing P uptake by Triticum aestivum L.—effects of rhizosphere concentration and counter ion. *Plant Soil*, 334, 151-159.

Marschner, H. (2002). Mineral nutrition of higher plants. 2nd ed. Academic Press. San Diego, California.

Strom, L., Owen, A.G., Godbold, D.L., Jones, D.L. (2002). Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biology & Biochemistry, 34, 703-710.

Wang, Y., He, Y., Zhang, H., Schroder, J., Li, C., Zhou, D. (2008). Phosphate mobilization by citric, tartaric, and oxalic acids in a clay loam ultisol. Soil Science Society American Journal, 72, 1263-1268.