Unsaturated time lag: Managing the expectations of policymakers using eazasc numerical models

Sara E. Vero^{1,2}, Rachel E. Creamer¹, Tiernan Henry³, Mark Healy², Tristan G. Ibrahim⁴, Karl G. Richards¹ & Owen Fenton¹ ¹Teagasc, Johnstown Castle, Environment Research Centre, Co. Wexford, Ireland. ² Civil Engineering, National University of Ireland, Galway, Ireland. ³Earth & Ocean Sciences, National University of Ireland, Galway, Ireland.

Introduction

• **Time lag** = intrinsic delay between remediation and measures

⁴Dept. For Environment, Food & Rural Affairs, London, United Kingdom

- **Model Input Data**
- Meteorological data at hourly and daily resolution.

Results

Daily meteorological data underestimated t_{μ} (>0.47 years) compared to hourly resolution – hourly data were consequently used for soil parameter analysis.

- improvements in water quality. Understanding time helps lag policymakers set realistic water quality targets.
- Time lag includes both groundwater (t_s) and unsaturated zone (t_u) components (Fig. 1).
- In situ measurement of t_u can be prohibitively expensive and slow.
- Numerical models estimate t₁₁ based on soil and met. data.

• Estimates of t_u coupled with groundwater travel times give a holistic appraisal of watershed time lag.

Free Draining Soil

hydraulic parameters Soil determined by:

- A. Generic data textural incorporated in the model.
- B. Pedotransfer functions based on detailed textural analysis.
- C. Measurement of the soil water characteristic curve (SWCC) and fitting of the Van Genuchten Mualem (VGM) equation.
- D. The VGM equation fitted to a partial SWCC (excluding the -15 bar pressure step).

Methods

- Conservative solute movement was simulated.
- Daily meteorological Hourly vs. resolution – 12 textural classes.

- nine real soil profiles.

• Simple to complex soil data (Fig. 2)

Data Complexity – Low to High

- Typically small standard deviation in initial and peak breakthrough using various methods of parameter estimation (<0.10 years and <0.28 years, respectively).
- Regarding centre of mass and solute exit, standard deviation ranged between 0.03 and 0.24 years, and 0.14 and 0.70 years, respectively.
- Saturated assumptions dramatically underestimate t₁ compared to simulations.

Fig. 1: Time lag from a source to receptor

Purpose

- While numerical models allow estimates of t_u, they are influenced quality/resolution of input by the data.
- This project aimed to determine the optimum:
 - a) meteorological, and

b) soil hydraulic input data for determining t_u using the Hydrus 1D model.

Measured Data Generic Sand-Silt-Clay % + Sand-Silt-Sand-Silt-Clay Textural Clay % + % + Bulk Bulk Density + Class + SWRC (excluding Bulk Bulk Density + SWRC 15 bar point) Density Density Textural RETC Rosetta Menu VGM Parameters - Qs, Qr, α, n, k_s, I **HYDRUS 1D** Cauchy upper boundary condition Free drainage lower boundary condition

Fig. 2: Simple to complex input data for the 9 soil profiles

Fig. 3: Solute breakthrough at the base of the profiles; initial breakthrough (IBT), peak, centre of mass (COM) and solute Exit.

Conclusions

- Hourly meteorological data are preferable.
- For initial or peak breakthrough, generic soil data are sufficient, precluding the need for SWCC construction.
- For centre of mass (indicating the bulk effect of measures) or total solute exit, the SWCC should be measured.
- The challenging -15 bar pressure step can be excluded from the SWCC with minimal effect on t_{ii} estimates – improving the speed and ease of analysis.
- These results should enable the judicious use of resources in calculating t₁₁ using Hydrus 1D.
- Validation of these estimates against in situ tracer tests in two vulnerable watersheds is in progress.

References

• Fenton et al. 2011. Env. Sci. & Policy. 14(4) • Vero et al. 2014. Journal of Contaminant Hydrology

Acknowledgements

The authors gratefully acknowledge the funding supplied by the Teagasc Walsh fellowship Scheme, the Irish Geological Association and the

International Association of Hydrogeologists – Irish Group.

