284-3 How Well Do Plant Hydraulic Traits Predict Species' Distributions Across the World?.
Poster Number 615
See more from this Division: C03 Crop Ecology, Management & QualitySee more from this Session: Crop Ecology, Management and Quality: II
We gathered angiosperm trait data taken from published and unpublished reports and use simple linear models to predict mean climate values from mean trait values. We then evaluate which hydraulic traits appear most closely aligned with commonly measured and readily accessible climate measurements.
Embolism resistance of leaves was strongly correlated with mean annual precipitation (MAP) across angiosperms from Chile and Australia (r2 = 0.68, n = 92). The predictive power of this variable was improved further (r2 = 0.72) when “aridity” (MAP / potential evaporation) was used as the climate variable. Embolism resistance of stem xylem was a poor predictor of habitat MAP (r2 = 0.06, n = 766), as well as aridity (r2 = 0.033; n = 766). However, the predictive power of this trait was markedly improved if the soil water potential (measured as “pre-dawn” leaf water potential) was used in the analysis, rather than MAT or aridity (r2= 0.24, n = 202).
Although plant hydraulic traits appear to be reasonably good predictors of climate, much across-species variation in climate remains unexplained by a single trait, i.e., bivariate axis. This suggests that other traits not examined in this study (e.g., capacitance, cuticle transpiration, biomass partitioning) may also represent important axes of variation.
See more from this Session: Crop Ecology, Management and Quality: II