445-13 Impact of N Application Rate on Nitrogen Use Efficiency and pH in a Fertilizer-Management Continuous Corn Silage System.

Poster Number 1332

See more from this Division: SSSA Division: Soil Fertility & Plant Nutrition
See more from this Session: Nitrogen: II
Wednesday, November 5, 2014
Long Beach Convention Center, Exhibit Hall ABC
Share |

Amir Sadeghpour1, Quirine M. Ketterings2, Gregory Godwin2 and Karl J. Czymmek2, (1)Cornell University, Cornell University, Ithaca, NY
(2)Animal Science, Cornell University, Ithaca, NY
Nitrogen (N) is essential for producing optimum corn (Zea Mays L.) silage yield with high quality. Under-application can impact yield and quality while over-application can result in low nitrogen use efficiency (NUE) and hence loss of N to the environment, a decrease in soil pH, and possibly in soil organic matter. The objectives of this study were to (i) determine the optimum N rate for continuous corn silage production and (ii) assess the influence of under- and over- application of N on yield, forage quality, soil nitrate, organic matter and pH. A 5-yr field study was conducted with six N rates (0, 56, 112, 168, and 224, and 280 kg N ha-1; sidedressed) in five replications for corn that was established with a 22 kg N ha-1 starter. Corn silage yield (dry matter basis) varied from year-to-year. In 2002 and 2005 (July drought), corn yield did not increase with N application, averaging 6.2 and 12 Mg ha-1, respectively. In 2003 and 2004, the most economical N rates (MERN) were 95 and 107 kg N ha-1, respectively, with yields of 13.3 and 14.1 Mg ha-1, respectively. Over five years, soil pH was decreased significantly with N application rates higher than 56 kg N ha-1. These findings suggested that over-application of N can increase lime needs over time. Nitrogen application rates below than MERN (0 and 56 kg N ha-1) decreased organic matter levels over time, possibly reflecting a reduction in carbon addition through root biomass for lower yielding plots. The results show an optimum N sidedress rate of 100 kg N ha-1 in good growing seasons versus 0 kg N ha-1 under challenging growing condition. The results also show that N application cannot overcome weather-related challenges for this soil.
See more from this Division: SSSA Division: Soil Fertility & Plant Nutrition
See more from this Session: Nitrogen: II