334-5 Development of an Interactive Crop Growth Web Service Architecture to Review and Forecast Agricultural Sustainability.
Poster Number 1611
See more from this Division: SSSA Division: Soils & Environmental QualitySee more from this Session: Soils and Environmental Quality
Tuesday, November 4, 2014
Long Beach Convention Center, Exhibit Hall ABC
As climate change and weather variability raise issues regarding agricultural production, agricultural sustainability has become an increasingly important component for farmland management (Fisher, 2005, Akinci, 2013). Yet with changes in soil quality, agricultural practices, weather, topography, land use, and hydrology – accurately modeling such agricultural outcomes has proven difficult (Gassman et al, 2007, Williams et al, 1995). This study examined agricultural sustainability and soil health over a heterogeneous multi-watershed area within the Inland Pacific Northwest of the United States (IPNW) - as part of a five year, USDA funded effort to explore the sustainability of cereal production systems (Regional Approaches to Climate Change for Pacific Northwest Agriculture - award #2011-68002-30191). In particular, crop growth and soil erosion were simulated across a spectrum of variables and time periods - using the CropSyst crop growth model (Stockle et al, 2002) and the Water Erosion Protection Project Model (WEPP - Flanagan and Livingston, 1995), respectively. A preliminary range of historical scenarios were run, using a high-resolution, 4km gridded dataset of surface meteorological variables from 1979-2010 (Abatzoglou, 2012). In addition, Coupled Model Inter-comparison Project (CMIP5) global climate model (GCM) outputs were used as input to run crop growth model and erosion future scenarios (Abatzoglou and Brown, 2011). To facilitate our integrated data analysis efforts, an agricultural sustainability web service architecture (THREDDS/Java/Python based) is under development, to allow for the programmatic uploading, sharing and processing of variable input data, running model simulations, as well as downloading and visualizing output results. The results of this study will assist in better understanding agricultural sustainability and erosion relationships in the IPNW, as well as provide a tangible server-based tool for use by researchers and farmers – for both small scale field examination, or more regionalized scenarios.
See more from this Division: SSSA Division: Soils & Environmental QualitySee more from this Session: Soils and Environmental Quality