Plant & Soil Sciences

QTL Mapping for Switchgrass Tillering Related Traits in Two Populations

Dan Chang^{1,2}, Yanqi Wu¹, Linglong Liu¹, Shuiyi Thames¹, Hongxu Dong¹, Carla Goad³, Shiqie Bai⁴, Shiva Makaju¹, Tilin Fang¹

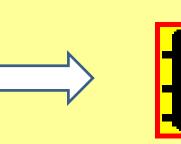
- 1. Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- 2. Department of Grassland Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
 - 3. Department of Statistics, Oklahoma State University, Stillwater, OK 74078, USA
 - 4. Sichuan Academy of Grassland Science, Xipu, Chengdu, Sichuan 611731, China

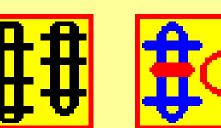
Introduction

Switchgrass (*Panicum virgatum*) is a perennial C₄ grass which has been recognized as a promising bioenergy crop. Yield components like tillering related traits are important in switchgrass breeding. Accordingly, the objectives of this project were aimed to: (1) characterize tillering related traits, (2) estimate their broad-sense heritabilities, (3) identify QTLs based on selfed and hybrid switchgrass populations.

Materials and Methods

Hybrid pop. NL94 ($^{\circ}$) \times SL93 ($^{\diamond}$) N = 176


Selfed pop. NL94 (⊗) N = 265


Phenotypic data in 2012 & 2013 Two locations: Stillwater & Perkins, OK

SSR genotyping

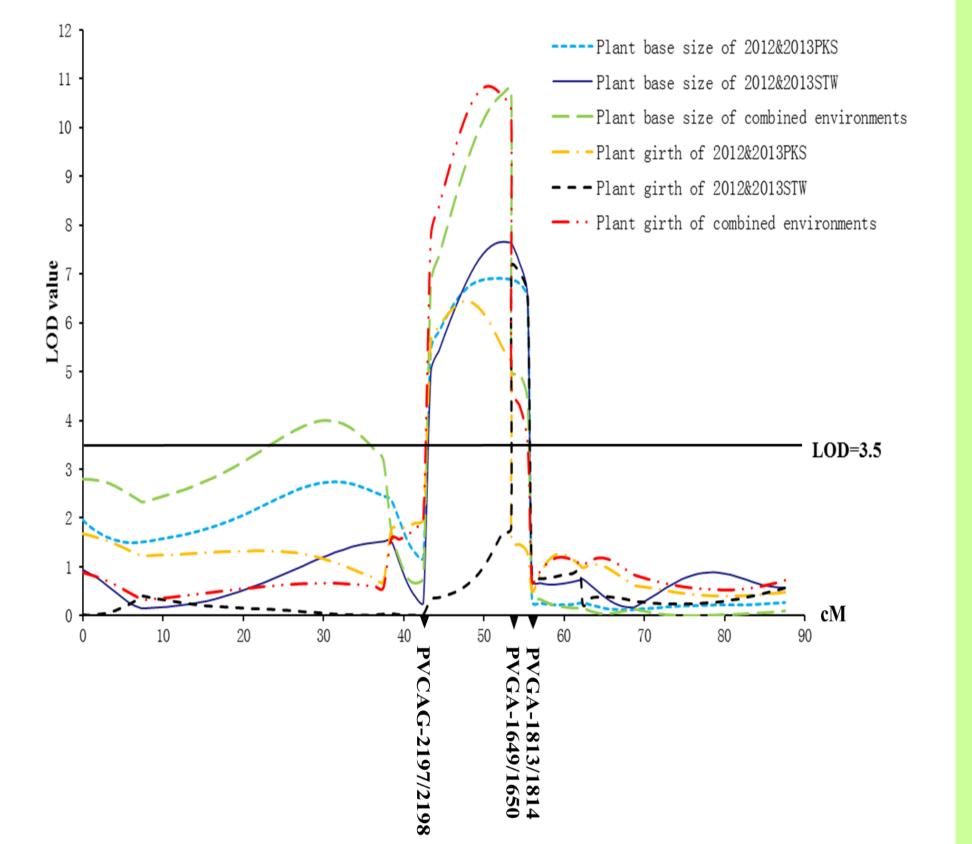
Map construction: LOD ≥ 7.0

QTL analysis: Interval mapping & MQM

Results

- Six tillering related traits except nodes per tiller have significant positive correlation with biomass yield in joint environment (Table
- 2. Based on the two populations, tiller ability, plant girth, nodes per tiller, and plant base size have low to moderate broad-sense heritabilities while tiller diameter, and tiller dry weight have moderate to high broad-sense heritabilities (Table 2).
- 3. A total of 17 and 25 QTLs in the hybrid and selfed populations for the tillering related traits were detected, respectively (examples in Fig. 1 & 2).

Results and Cont.


Table 1 Correlation coefficients between tillering related traits and biomass yield in hybrid and selfed populations

Pop.	Tiller ability	Plant girth (cm)	Tiller diameter (mm)	Nodes per tiller	Tiller dry weight (g)	Plant base size (cm)
Hybrid	0.15*	0.18*	0.08*	ns	0.11*	0.34*
Selfed	0.22*	0.29*	0.16*	ns	0.16*	0.37*

^{*}P<0.0001

Table 2 Broad-sense heritabilities for 6 tillering related traits in hybrid and selfed populations

Pop.	Tiller ability	Plant girth (cm)	Tiller diameter (mm)	Nodes per tiller	Tiller dry weight (g)	Plant base size (cm)
Hybrid	0.26	0.17	0.77	0.26	0.75	0.38
Selfed	0.54	0.25	0.68	0.19	0.63	0.29

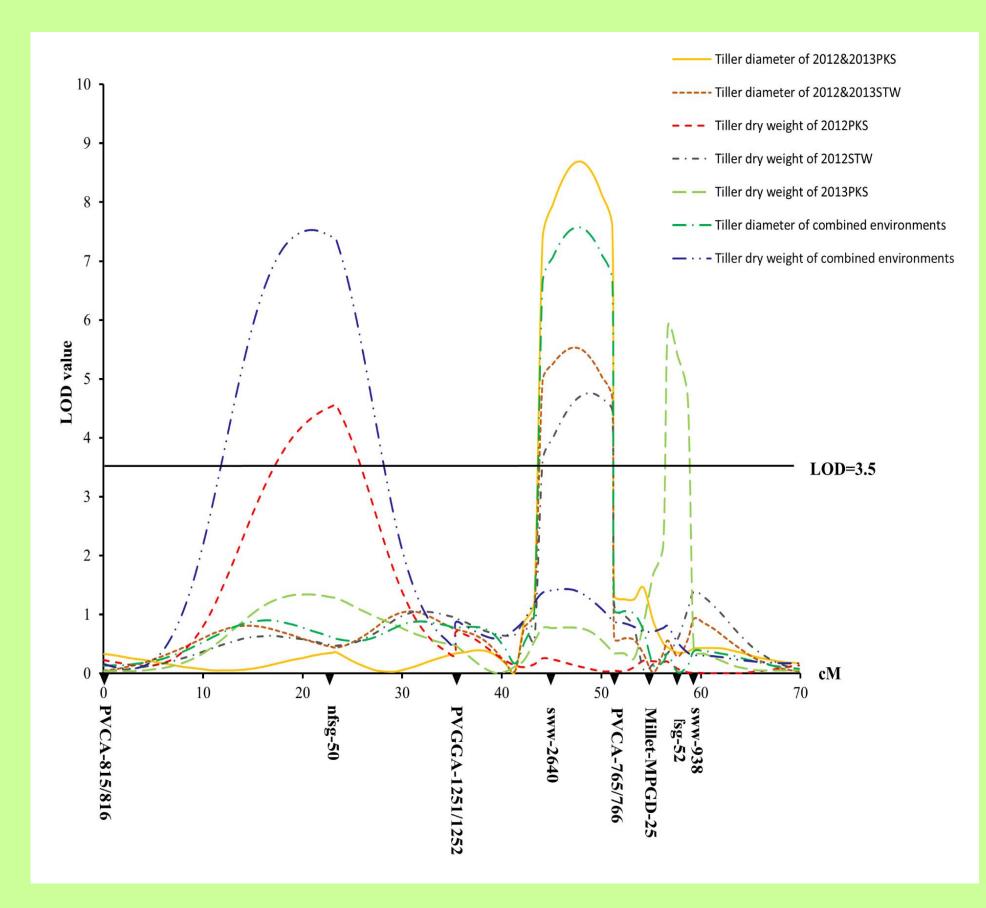


Fig. 1 QTLs on LG 5a in the hybrid pop. Fig. 2 QTLs on LG 2a in the selfed pop.

References

Liu, L.L., Y.Q. Wu, Y.W. Wang, and T. Samuels. 2012. A high-density simple sequence repeat-based genetic linkage map of switchgrass. Genes Genomes Genetics 2:357-370. Dong, H.X., S.Y. Thames, L.L. Liu, M.W. Smith, L.L. Yan, and Y.Q. Wu. 2015. QTL mapping for reproductive maturity in lowland switchgrass populations. Bioenergy Research DOI 10.1007/s12155-015-9651-9.

Acknowledgements

We acknowledge Gary Williams for field wok assistance. The project is in part sponsored by NSF-EPSCoR, Sun Grant Initiative, Oklahoma Agricultural Experiment Station, and USDA Hatch to Y.Q. Wu.