Investigating Impacts of Multiple Parameters on CO2 Fluxes from a Continuous Corn Field

Liming Lai¹, Sandeep Kumar¹, Vance N. Owens², David E. Clay¹, Deeksha Rastogi³, Moetasim Ashfaq³ and Joseph Schumacher¹ ¹Department of Plant Science, South Dakota State University, Brookings, SD; ²North Central Regional Sun Grant Center, South Dakota State University, Brookings, SD; ³Oak Ridge National Laboratory, Oak Ridge, TN

INTRODUCTION

- * Most of the previous studies focused on one or two parameters influencing CO₂ fluxes from croplands. Little is known about analysis of CO₂ fluxes using multiple parameters because of difficult measurements of all parameters.
- * The DAYCENT model provides a useful tool to simulate these parameters. However, its performance strongly depends on how well it

RESULTS

Table 2. Evaluation criteria for comparing soil CO_2 fluxes (g m⁻² d⁻¹), soil temperature (°C), soil moisture (cm³ cm⁻³), and corn yield (Mg ha⁻¹) between measured and the modeled data for calibration and validation.

Evaluation	Calibration CO ₂	Validation		
Criteria*		Soil Temperature	Moisture	Yield
$R^{2}([0.5,1))$	0.71	0.80	0.51	0.84
PBIAS ((0, 15%])	1.40%	1.10%	-2.70%	1.10%
ME([0.5, 1))	0.71	0.71	0.02	-

Fig. 2. Means with 95% confidence interval of forecasting CO_2 fluxes from corn land for next 36 years using the DAYCENT using weather data simulated by climate models.

is calibrated and validated via local conditions.

OBJECTIVES

- * Conduct systematic analysis of impacts of multiple parameters on CO₂ fluxes from a continuous corn (*Zea mays L.*) land.
- * Predict CO_2 fluxes at this study site.

MATERIALS AND METHODS

- * The study site is near Lennox, South Dakota. The CO₂ fluxes, soil temperature and moisture in 2008, 2009, and 2011 were measured using LI-8100A Automated Soil CO₂ Flux System.
- * An improved methodology, combining PEST model and "Trial and Error" method, was used

* The calibrated DAYCENT model was good based on values of *R²*, *PBIAS*, *and ME* (Table 2) and Fig. 1.

^{*} The precipitation, soil temperature and moisture, NPP, SOM, and wfps significantly impacted soil surface CO_2 fluxes (p-value< 0.05). However, air temperature, aboveground live carbon (aglivc), and ammonium (NH4) did not impact CO_2 fluxes significantly (p> 0.05) (**Table 3**).

* The trend of means with their 95% confidence

to calibrate and validate DAYCENT model

* The calibrated DAYCENT model was used to simulate five parameters: aglivc, NPP, som1c, wfps, and NH4. The Semi-log linear model was built using the ten variables (Table 1) for analyzing impacts of multiple parameters on CO₂ fluxes. Further, the DAYCENT model was used to predict CO₂ fluxes using the future weather data predicted by ten climate models.

Table 1. Variables in Semi-log regression model

Var	Туре	Unit	Description
CO2	num	g m ⁻² d ⁻¹	CO2 fluxes from corn field
tem	num	°C avg d ⁻¹	Air temperature
prcp	num	cm d ⁻¹	Precipitation
Tsoil	num	°C avg d ⁻¹	Soil temperature in soil (5cm)

period (A), and maximum (Max_T) and minimum (Min_T) temperature and precipitation (Prcp) data (B) for 2008 through 2011.

Table 3. Results of the semi-log linear model for estimating the soil surface CO_2 fluxes using different environmental variables for 2008, 2009, and 2011.

Variable	Estimate	Std-err	t-value	p-value	VIF
Intercept	-20.06740	1.906	-10.53	<.0001	-
tem	-0.00547	0.006	-0.84	0.400	5.84
prcp	-0.12855	0.042	-3.09	0.002	1.14
lTsoil	0.94309	0.107	8.85	<.0001	4.95
lMsoil	0.44756	0.107	4.2	<.0001	2.13
aglivc	-0.00015	8.2E-05	-1.8	0.073	2.28
NPP	0.02575	0.003	8.7	<.0001	2.84
lsom1c	3.43961	0.347	9.9	<.0001	1.62
lwfns	-0 17035	0 083	-2.06	0 040	2.43

intervals on forecasting CO_2 fluxes for next 36 years increases over time with function y = 3.0548*year + 609.33 and R² = 0.80 (**Fig. 2**). The higher CO₂ fluxes from corn land may be due to the interactions of various parameters and parameters impacting these fluxes.

CONCLUSIONS

* The impact of multiple parameters on soil surface CO_2 fluxes is different from that of single parameter used in most of the published studies.

* All the parameters interact to emit high CO₂ fluxes in the corn land, growing larger areas of corn with increase of its sale price being a bioenergy source could result in increased CO₂ emissions.

Msoilnumcm³ cm⁻³Soil moisture in soil (10cm)aglivcnumg m⁻²Above ground live carbonNPPnumgC m⁻²d⁻¹Net primary productivitysom1cnumg m⁻²d⁻¹Carbon in active soil organic matterwfpsnumcm³ cm⁻³Water filled pore space in soil (5cm)NH4numppmAmmonium in soil

Email: *liming.lai@sdstate.edu*

