Nitrogen fertilizer rate effects on soil organic carbon in Iowa continuous corn and corn-soybean systems

Hanna J. Poffenbarger¹, Daniel W. Barker¹, Matthew J. Helmers², Fernando E. Miguez¹, John E. Sawyer¹, Johan Six³, Michael J. Castellano¹ ¹Department of Agronomy, Iowa State University ²Department of Agricultural and Biosystems Engineering, Iowa State University ³Department of Environmental Systems Science, ETH-Zurich

Introduction

- Nitrogen fertilizer rate is a key factor affecting soil organic (SOC) in corn-based cropping systems:
 - Nitrogen fertilizer increases crop productivity an residue inputs. Greater residue inputs typically to greater SOC.
 - However, N fertilizer may also enhance SOC mineralization, which may cause neutral or nega C balances despite increased residue inputs.

• To determine the effects of N fertilizer rate on change in over time in continuous corn and corn-soybean systems.

Hypotheses

- 1. An increase in N fertilizer rate from zero to the agronom optimum N rate (AONR) will have a positive effect on res inputs and SOC change.
- 2. An increase in N fertilizer rate from the AONR to an exce rate will not affect residue inputs and increase soil inorga N, causing a neutral or negative effect on SOC change.

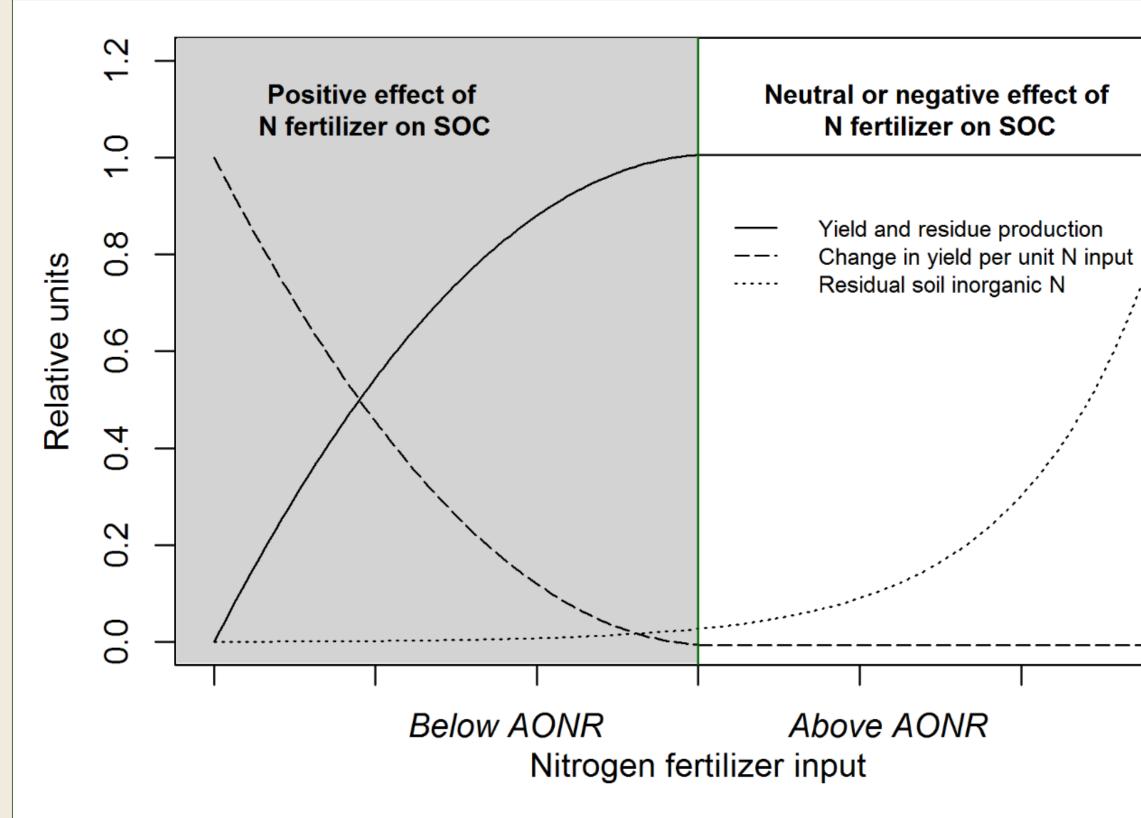
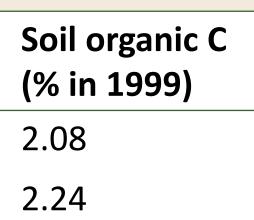
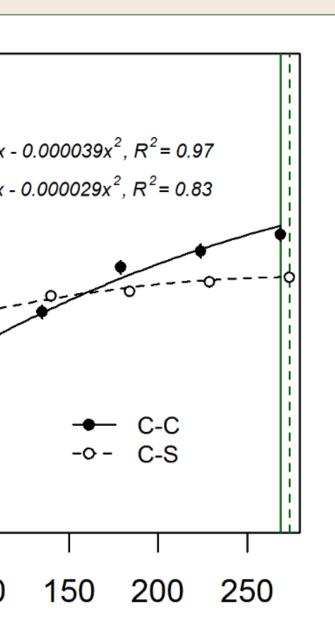


Figure 1. Conceptual relationships among N fertilizer input relative to the agronomic optimum N rate (AONR), crop production (residue and yield), and post-harvest resid inorganic N. The green vertical line represents the AONR.




	Dep		intental Systems Science	c, LIII-Zuitch
	Methods			
nic C and lead	 In two long-term N fertilization trials, specific N rates (0-269 kg N ha⁻¹) have been applied to corn in the same continuous corn and corn-soybean plots since 1999. Quadratic or quadratic-plateau models were fit to corn yield data to determine the AONR for each system. 			
gative	 Corn and soybean yields (2000-2014) were used to estimate average annual aboveground dry matter production, assuming harvest index values of 0.50 for corn 			
SOC	and 0.44	for soybean.		AL ALE
•	collected and analy	oles (0-15 cm) we in 1999 and 201 yzed for organic (.4 on corn growth. Corn no N fertilizer, while received N fertilizer a	e of N fertilizer rate effects n in the foreground receive corn in the background at the agronomic optimum
nic	and total	N concentration	S. N rate.	
esidue	Table 1. Soil pro are for the surfa	• •	cations. Textures and soil org	anic C concentrations
essive	Location	Soil order	USDA texture class	Soil organic C (% in 1999)
ganic	Ames, IA	Mollisol	Loam	2.08
	Chariton, IA	Mollisol	Silt loam	2.24
	Results			
	atter resid	Ames C-C: $y = 3.52 + 0.061x - 0.00015x^{2}$ $y = 9.60$ for $x > 201$, $R^{2} = 0.98$ C-S: $y = 5.26 + 0.023x - 0.000064x^{2}$ $y = 7.38$ for $x > 182$, $R^{2} = 0.81$		$x - 0.000039x^2, R^2 = 0.97$ $x - 0.000029x^2, R^2 = 0.83$ $x^2 - 0.000029x^2, R^2 = 0.83$
		50 100 150	200 250 0 50 100	150 200 250
	Corn N rate, kg ha ⁻¹ yr ⁻¹			
		•	y matter residue inputs (not	
nic idual soil	locations in Iowa. represent ± one st	Curves are quadratic or andard error. The greer	inuous corn (C-C) and corn-s quadratic plateau models fin vertical lines indicate agror the C-S rotations were slight	t to the data. Error bars nomic optimum N rates (so

At the two sites, increasing N fertilizer rate from zero to the AONR increased average annual aboveground dry matter residue inputs by 2.7 and 4.8-fold in continuous corn and by 1.4 and 1.5fold in corn-soybean.

of N fertilizer rate effects in the foreground received corn in the background at the agronomic optimum

including grain) in response oybean (C-S) rotations at two to the data. Error bars nomic optimum N rates (solid

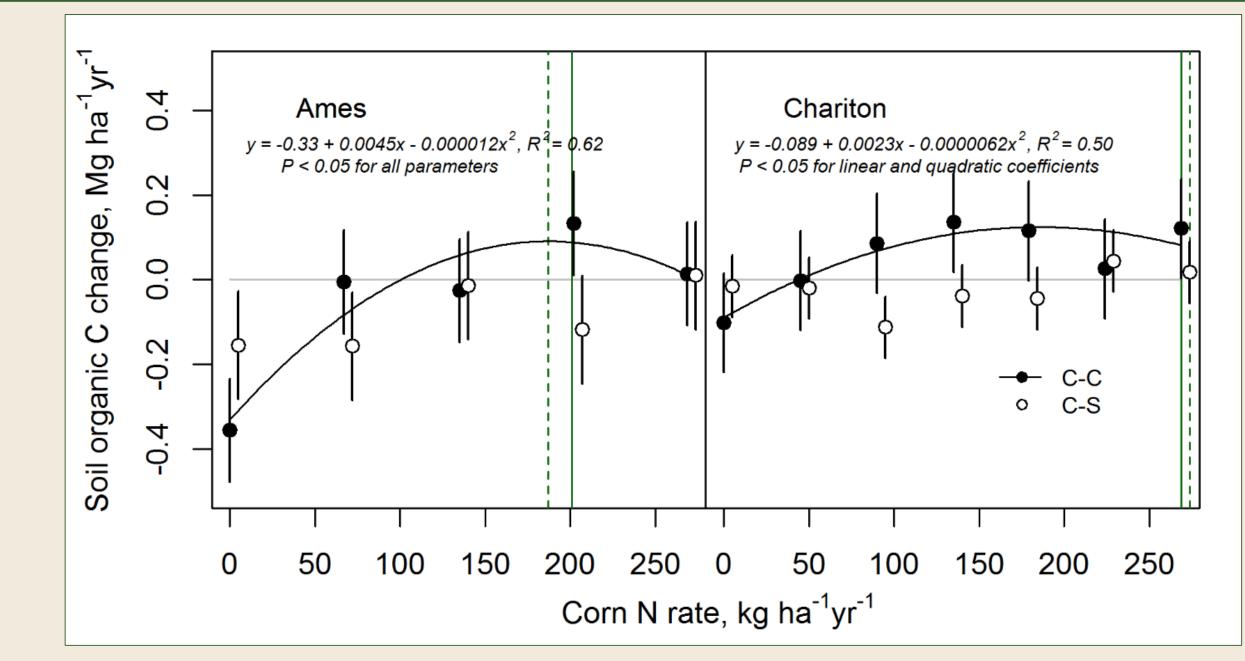


Figure 4. Average annual soil organic C change in response to N fertilizer rate applied to corn in continuous corn (C-C) and corn-soybean (C-S) rotations at two locations in lowa. Curves are quadratic models fit to the data. Error bars represent 95% confidence intervals. The green vertical lines indicate agronomic optimum N rates (solid for C-C; dashed for C-S). X-axis values for the C-S rotations were slightly offset for visual clarity.

- For continuous corn at both sites, the average annual change in SOC increased significantly from below 0 Mg C ha⁻¹ yr⁻¹ where no N was applied, to a maximum of ~0.13 Mg C ha⁻¹ yr⁻¹ at N rates between 150 and 200 kg N ha⁻¹.
- For corn-soybean rotations, the average annual change in SOC was generally at or below 0 Mg C ha⁻¹ yr⁻¹.
- Soil organic C change was positively related to average annual aboveground dry matter residue inputs for continuous corn, but not for corn-soybean.

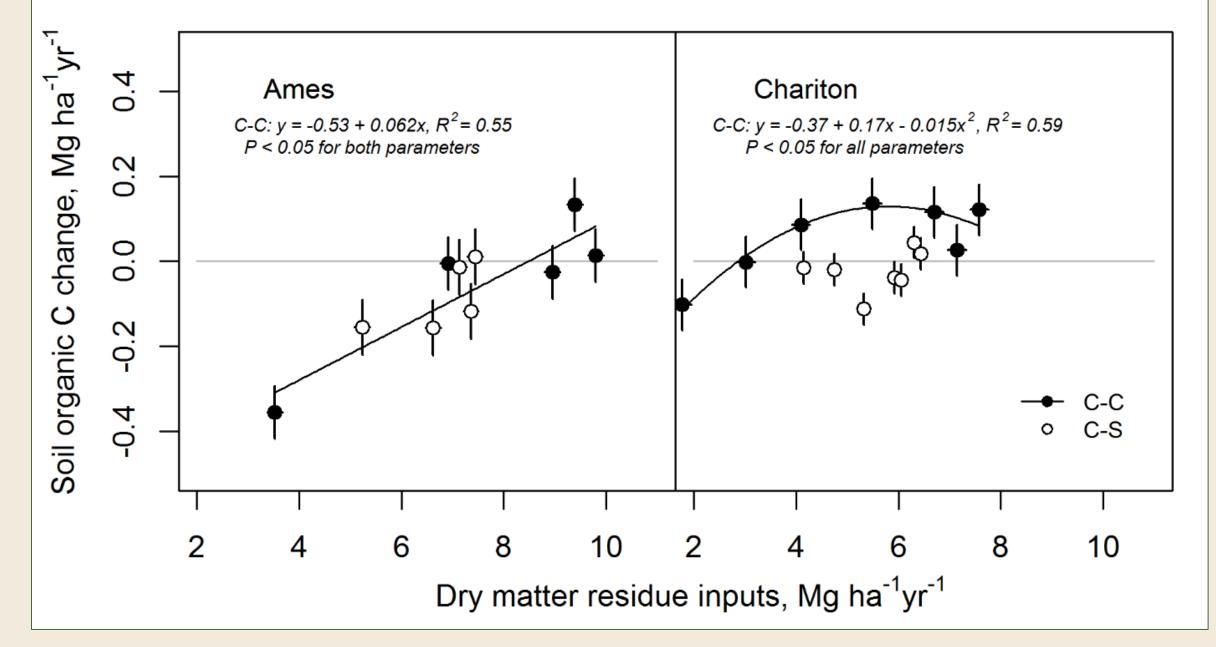


Figure 5. Average annual soil organic C change related to average annual aboveground dry matter residue inputs in continuous corn (C-C) and corn-soybean (C-S) rotations at two locations in Iowa. Curves are linear or quadratic models fit to the data. Error bars represent ± one standard error.

Conclusions

- Optimally fertilized continuous corn systems accrued SOC, whereas optimally fertilized corn-soybean systems did not.
- Fertilizing above the AONR slightly decreased the positive effect of residue inputs on SOC change for Ames continuous corn.