

UNIVERSITY of **FLORIDA**

Mn Oxide affects nitrification and N₂O emissions in a subtropical rice soil with variable water regimes

Xiaoping Xin^{1,2*}, Jing Su¹, Zhihui Wang¹, Xianjun Jiang¹, Zhenli He²

¹*College of Resources and Environment, Southwest University, Chongqing 400715, China, Email: <u>xxp1024@yahoo.com</u> ²Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945

Xiaoping Xin

High lights

- 1. Manganese oxide retarded nitrification rate in aerobic conditions
- 2. Manganese oxide increased nitrification rate in anaerobic conditions
- 3. Manganese oxide decreased N_2O emission rate in anaerobic conditions

Introduction

Approximately 155 million ha of land are used for rice cropping, and more than 50% of the world's population feeds on rice, while nitrogen fertilizer-use efficiency in rice-based ecosystems is usually less than half of the efficiency found in other agricultural systems (Roy et al. 2003). The periodic short-term redox cycles induced by paddy management affects soil redox potential, leading to the formation of distinct layers characterizing Fe/Mn distribution /redistribution (Roy et al. 2003) and nutrient transformations influence soil microorganisms and soil nitrogen cycling (Kikuchi et al. 2007; Xin et al. 2014). Manganese toxicity to microorganisms has been proposed (He et al. 2005; Xin et al. 2015), and MnO₂ may also act as electron acceptor, oxidizing NH_3/NH_4^+ to N₂ directly under anaerobic conditions, which is thermodynamically favorable, especially in acid soils (Luther et al. 1997). Therefore, we hypothesized that MnO₂ may play an important role in nitrification and denitrification in rice-based ecosystems with variable water management, since it has both environmental and economic concerns.

Soil species	Moisture content (WHC)	Model	Np (mg N kg-1)	K ₀ (mg N kg ⁻¹ day ⁻¹ or K ₁ (day ⁻¹)	R ₂	Vp (mg N kg ⁻¹ day	Va
Control	50%	First-order	17.9	0.57	0.99	10.2	1.87
	100%	Zero-order		2.06	0.99		2.19
	200%	First-order	0.22	14.0	0.99	3.09	1.11
+ 3% Mn	50%	Zero-order		1.62	0.99		1.67
	100%	Zero-order		1.86	0.99		1.89
	200%	Zero-order		2.02	0.98		1.80

Materials and Methods

Paddy soils were collected from Purple Soil Ecology Experimental Station of Southwest University, Chongqing, China (30° 26' N, 106° 26' E). Subsamples were prepared by amendment with 0% (unamended control) or 3% birnessite by weight. Soil moisture content of each sample was adjusted with deionized water to form three treatments: 50%, 100%, and 200% Water-holding capacity (WHC) moisture contents. After pre-incubation for 7 days, each spiked with 120 mg N kg⁻¹ (NH₄)₂SO₄ and At the intervals of 0, 1, 3, 7, and 10 days, subsamples were taken and analyzed for NH₄-N, NO₃-N, pH, Eh and N₂O fluxes. NO₃⁻-N concentration were modeled with a first-order reaction kinetic model. Data were subjected to one-way ANOVA and mean values were separated using Tukey's test and Duncan's multiple range test at *P*<0.05. All statistical analyses were performed by SPSS statistical package.

Table 1. Parameters of zero or first-order kinetics fitting $NO_3^{-}-N$ accumulation during the 10 days' incubation in a subtropical rice soil with variable water regimes. Np was potential nitrification; k0 or k1 was the rate constant of zero or first–order kinetics model; Vp was potential nitrification rate calculated from first-order kinetics as $Vp = k1^* Np$; Va was average net nitrification rate.

Results

mg

Ζ

 $(NH_4)_2SO_4$). Error bars represent standard deviation, n=3.

Discussion

- > Simulated results from nitrification dynamics indicated that Mn addition changed the pattern of nitrification from first-order to zeroorder model (Table 1). This indicated that the substrate for nitrification (NH₃) was sufficient relative to the oxidizing capacity of the ammonia oxidizers, and nitrification rates were limited by ammonia oxidizers rather than the substrate (NH₃) supply. Possible mechanisms may include Mn toxicity to nitrifying microorganisms, such as AOB and AOA (Xin et al. 2015).
- \geq Nitrification was retarded by MnO₂ under aerobic condition while significantly increased in the anaerobic treatment. The stimulation of nitrification by MnO_2 in the anaerobic condition may imply that MnO_2 plays an essential role as electron acceptor when O_2 is depleted. \succ The N₂O emission rate decreased while NO₃-N accumulation increased significantly after MnO₂ addition at 200% WHC (Figures 1 and 2), indicating that denitrification was depressed or inhibited by Mn oxide under anaerobic conditions. Possible mechanisms involved

Acknowledgements:

Synergy in Science: **Partnering for Solutions** ASA • CSSA • SSSA November 15-18 Minneapolis, MN

This research was, in part, supported by the Natural Science Foundation of China (No. 41271267), the Programs Foundation of Ministry of Science & Technology, China (2013BAJ11B03), a scholarship from the China Scholarship Council awarded to Xiaoping Xin and the University of Florida. in the depression of denitrification by Mn oxide may include competition as electron acceptors between NO_3^- and MnO_2 when O_2 was depleted.

Manganese oxide affects nitrification and N₂O emissions in a subtropical

rice soil with variable water regimes, implying that manganese oxides may

play an important role in the variation of nitrification in acidic soils.