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Combined Nutrient Removal from Agricultural Effluents
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Materials and Methods

Introduction

Nitrogen (N) and phosphorus (P) are both agriculturally-based
non-point source pollutants causing increasing concerns at
multiple scales. Significant negative water quality impacts
have been documented from nutrient contamination often
associated with fertilizer use and waste.
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Fig.1: Woodchip denitrification bioreactors are an
increasingly common “in-field” N-mitigation technique.

Denitrification bioreactors (Fig.7) use a carbon source (i.e.,
woodchips) in an artificially engineered anoxic environment to
encourage naturally occurring bacteria to convert nitrate-
nitrogen (NO5-N) into atmospheric di-nitrogen gas.

Recent studies have also demonstrated P removal with
phosphorus sorbing materials such as acid mine drainage
residuals (AMDr) or steel slag (SS) in flow through settings.
Dissolved reactive phosphorus (DRP) is chemically
transformed by adsorption and/or precipitation, effectively
reducing the amount of available P in solution.

Enhanced bioreactor design can potentially pair existing
denitrification technology with experimental P-sorbing filters,
capturing these concomitant nutrients in tandem.

Objective

Evaluate removal efficiency of two P removing media, acid
mine drainage treatment residuals (AMDr) and steel slag
(SS), when placed upstream or downstream of N removing
woodchips to refine paired nutrient removal designs (Fig. 2).
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Fig. 2: Flow configurations of N (woodchips-WC) & P (acid
mine drainage-AMDr; steel slag-SS) removal pairings.

A bench-scale experiment (Fig.3) consisting of
upflow denitrification woodchip columns (n=10,
15.2 x 60.9 cm PVC) paired with P-filters (AMDr,
n=6, 2.7 x51.6 cm; SS, n=4, 2.7 x 78.1 cm) was
constructed at The Conservation Fund’s
Freshwater Institute in May 2015.

N removal: woodchips, hardwood blend set to
achieve a hydraulic retention time (HRT) of 6-9 h
(fines <1 cm removed; Fig.4).

Fig.3: Woodchip columns (white PVC)

P removal: p-filters placed either up or paired with P-sorbing filters (clear PVC).

downstream of woodchips, bed depth scaled for
~ 7 min. HRT; all upflow.

« AMDr (iron based): treatment residuals of
acid mine drainage (0.6-4.0 mm; Fig.4).

« SS (calcium based): industrial waste from
steel production (0.2-0.6 mm; Fig.4).

Nutrient Source: Aquaculture production
wastewater dosed with NaNO; and KH,PO.,.

Three Phases: observed over 148 days.
* Phase I* fresh AMDr and SS.

* Phases Il & Il1I* rejuvenated AMDr (i.e., P was
harvested using 0.5 M NaOH) and fresh SS.

* Woodchips remained in columns throughout all phases.

Fig.4: (from left, same scale) N removing
woodchips and P removing AMDr and SS.
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Fig. 5: DRP and NO3-N influent/effluent concentrations for individual (a & b, respectively)
and denitrification/P-sorbing paired (c & d, respectively) columns over three phases.

Sampling points between and after denitrification and P-
sorbing columns allowed for analysis of individual media
(Fig.5, a & b) or paired nutrient-removal column’s (Fig.5, ¢ & d)
concentrations of DRP and NOs;-N, seen across three phases.

Overall AMDr outperformed the SS in DRP removal;
precipitate buildup caused poor conductivity in SS. Reduced
DRP concentrations occurred downstream of woodchips
(Fig.5, ¢), particularly in SS. Placement of P-sorbing media had
no notable effect on nitrate removal (Fig.5, d).

Differences in removal efficiencies (Table 1) between Phase | &
Phase Il were observed. AMDr saw reduced P-sorbing
capacity with each rejuvenation, though fresh SS also saw an
unexplained P-sorbing reduction. Nitrate removal efficiency
decreased over time (lower seasonal temperatures, data not
shown) with removal rates ranging 1.23-52.43gNm™3d™"
(average 23.53g N m~™3d™1, n=105).

Table 1: Average discrete removal efficiencies (%) of
NO5-N & DRP from single or paired nutrient removal.

Removal Efficiency DRP Nitrate

(%) Phase | Phaselll Phasel Phase I

AMDr only 612 53+3 -6+ 2 /] +2

SS only 38+12 18+10 -6%2 311
Woodchip only 1817 2+3 40+13 205
AMDr upstream /114 57+£4 3316 172
SS upstream 47+4 22+7 4111 186
AMDr downstream  72+4 584 40118 183
SS downstream 50+3 3612 39118 186

Phase | (56 d, sample events = 9); Phase Il (54 d, sample events = 8).
AMDr (n=3); SS (n=2); Woodchips (n=5).

Conclusions

« Placement of P-filters, either upstream or downstream,
had no notable effect on nitrate removal within
woodchip columns.

 [n-situ rejuvenation (P-harvesting) of P-sorbing AMDr
did not affect nitrate removal capabilities of the
woodchips. The ability to harvest P from AMDr gives it
an advantage over other P-sorbing materials.

« Acid mine drainage residuals (AMDr) had greater P-
removal efficiency than steel slag (SS), but volume-
based removal rates still need to be calculated.

« Optimal conditions for maximum P-removal may differ
between P-sorbing materials. Current SS fraction size
may be too small to allow for optimal conductivity.

« Future research includes prolonging hydraulic
retention times to increase nitrate removal.
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