

Determining Near-Surface Heat Flux Density Using Modeled Soil Thermal Conductivity

Background and Objectives

The gradient method determines soil heat flux density (G) from the product of soil thermal conductivity (λ) and temperature (T) gradient at a soil depth below surface.

$G = \lambda (dT / dz)$

- Heat-pulse (HP) probes have been used to measure λ . Its accuracy is influenced by soilair interface, soil-probe contact resistance, and ambient temperature drift near surface.
- Thermal conductivity models can estimate λ with sufficient accuracy from information of soil texture, bulk density ($\rho_{\rm b}$), and water content (θ).
- The **objectives** of this study are to evaluate:
 - \checkmark the potential of estimating near-surface G using modeled thermal conductivity (λ_m) with the gradient method, and
 - the influences of θ and $\rho_{\rm b}$ on $\lambda_{\rm m}$ and G results.

Materials and Methods

• Field site: A bare sandy loam soil (79.8, 7.7, and 12.5% sand, silt, and clay contents, respectively) in the experimental farm of China Agricultural University.

Measurements (Fig. 1):

- ✓ Field measurements lasted for 25 d (DOY 253-278);
- ✓ G at 2, 6, and 10 cm were determined with two approaches: gradient method using measured λ_{HP} and gradient method using modeled $\lambda_{\rm m}$.

Soil heat flux calculations (Eq. 1, Fig. 1):

Using measured λ_{HP}

$G_{\rm HP} = -\lambda_{\rm HP} \times (\Delta T_{\rm HP} / \Delta z)$

- \checkmark Using modeled $\lambda_{\rm m}$ from L07
 - $G_{\rm m-L07} = -\lambda_{\rm m-L07} \times (\Delta T_{\rm t}/\Delta z)$
- \checkmark Using modeled $\lambda_{\rm m}$ from L14
 - $G_{\text{m-L14}} = -\lambda_{\text{m-L14}} \times (\Delta T_{\text{t}} / \Delta z)$

Parameter	Depth (cm)	Interval	Equipment/sensor
Bulk density (ρ _b)	0-5, 5-10	1.9 d	Ring samplers
Gravimetric water content (θ_m)	2, 6, 10	1.9 d	Layering sampler (Zha
TDR water content (θ_{TDR})	2, 6, 10	1 h	TDR 100 and 7.5-cm
Thermal conductivity (λ_{HP})	2, 6, 10	1 h	3-needle heat-pulse s
Temperature (<i>T</i>)	1, 3, 4, 8, 12	1 h	Thermocouple (T_t) and 3-needle heat-pulse s

For heat-pulse λ_{HP} measurements: 1) ambient temperature drift was corrected (Jury and Bellantuoni, 1976); 2) late-time fitting scheme was used to fit the $\Delta T(t)$ curves (Lu et al., 2013).

The λ models

L07 Model
$\lambda_{m-L07} = (\lambda_{sat} - \lambda_{dry})K_{e} + \lambda_{dry}$
$\boldsymbol{\lambda}_{sat} = (\boldsymbol{\lambda}_{q}^{f_{sa}}\boldsymbol{\lambda}_{o}^{1-f_{sa}})^{1-n}\boldsymbol{\lambda}_{w}^{n}$
$\lambda_{dry} = -0.56n + 0.51$
$K_{e} = \exp\{\epsilon [1 - (\theta/\theta_{s})^{(\epsilon-1.33)}]\}$

 f_{sa} and f_{cl} : sand and clay fraction, respectively *n*: total porosity $(1-\rho_b/2.65)$

Three parameters, **texture**, $\rho_{\rm b}$, and θ , are required for λ modeling.

L14 Model

 $\lambda_{m-L14} = \lambda_{dry} + exp(\beta - \theta^{-\alpha})$ $\lambda_{drv} = -0.56n + 0.51$ $\alpha = 0.67 f_{cl} + 0.24$ $\beta = 1.97 f_{sa} + 1.87 \rho_{b} - 1.36 f_{sa} \rho_{b} - 0.95$

a and b: shape factors of the $\lambda(\theta)$ curve

Xiaoyang Peng¹, Yili Lu¹, Joshua Heitman², Robert Horton³, and Tusheng Ren^{1*} ¹Department of Soil & Water Sciences, China Agricultural University, Beijing, China 100193 ²Soil Science Department, North Carolina State University, Raleigh, NC 27695 ³Department of Agronomy, Iowa State University, Ames, IA 50011

ε: texture dependent factor, 0.96 for coarse soils

Table 1. RMSE of G_m estimates using modeled λ_m .						
Depth (cm)	With $\Delta T_t / \Delta z$		With ΔT _{HP} /Δz			
	L07	L14	L07	L14		
2	9.1	8.9	6.6	5.7		
6	5.8	5.7	1.8	1.6		
10	5.8	5.9	1.3	1.3		
Table 2 RMSE of modeled λ						

Depth (cm)	L07	L14			
2	0.09	0.08			
6	0.05	0.05			
10	0.05	0.05			

Fig. 3. Dynamics of λ_{HP} and modeled λ_{m-L14} from dynamic ρ_{b-v} values (every 1.9 d) and a fixed ρ_{b-1} (measured on DOY 253) at 2 cm.

15

10 E

2 Rainf

Fig. 4. a) Dynamics of λ_{HP} and modeled λ_m (with hourly θ_T and discrete θ_{s}) at 2 cm during DOY265-268; b) time series of G_{HP} and G_{m} estimated with $\lambda_m(\theta_T)$ and $\lambda_m(\theta_s)$. $\Delta T_{HP}/\Delta z$ was used with both λ_{HP} and λ_{m} for estimating G_{HP} and G_{m} . Rainfall is also shown in Fig. 4a as a total of every 6 h.

Correspondence

Xiaoyang Peng: xypeng@cau.edu.cn Tusheng Ren: <u>tsren@cau.edu.cn</u>

Results and Discussions

- **solar radiation** (Fig. 2), with the magnitude of G decreasing with soil depth;
- $G_{\rm m}$ and $G_{\rm HP}$ ranged from -70 to 210 W m⁻² and -70 to 220 W m⁻² at 2 cm, respectively;
- $G_{\rm m}$ and $G_{\rm HP}$ reduced to -50 to 160 W m⁻² at 6 cm, and to -50 to 130 W m⁻² at 10 cm.
- **2.** Comparison of $G_{\rm m}$ and $G_{\rm HP}$
 - G_m agreed well with G_{HP} at three depths (with RMSE of 5.7-9.1 W m⁻², Table 1). The errors were attributed to the differences between $\Delta T_{\rm t}/\Delta z \& \Delta T_{\rm HP}/\Delta z$ and between $\lambda_{\rm m} \& \lambda_{\rm HP}$;
 - When using $\Delta T_{\mu\rho}/\Delta z$ with λ_m and $\lambda_{\mu\rho}$ for estimating G (Eq. 1), G_m errors that caused by λ_m errors were in the range of 1.3-6.6 W m⁻² (Table 1);
 - G_{m-L07} and G_{m-L14} estimates were in close agreement.
- 3. Field performance of λ models (Table 2)
 - λ_m estimates from the L07 and L14 models were in close agreement;
 - RMSEs of λ_m : 0.05-0.09 and 0.05-0.08 W m⁻¹ K⁻¹ for L07 and L14 models, respectively;
 - $\lambda_{\rm m}$ and $\lambda_{\rm HP}$ discrepancy was observed at 2 cm, producing larger $G_{\rm m}$ errors.
- 4. Effect of $\rho_{\rm b}$ on λ modeling and G estimate
 - $\rho_{\rm b}$ increased from 1.27 to 1.39 and 1.35 to 1.40 g cm⁻³ in 0-5 and 5-10 cm layers, respectively;
 - Using dynamic p_b improved the model performance. At 2 cm, for example,
 - \checkmark With fixed ρ_{b-l} , λ_{m-L14} deviated from λ_{HP} gradually (Fig. 3), with RMSE of 0.08 W m⁻¹ K⁻¹;
 - \checkmark With dynamic $\rho_{b-\nu}$, λ_{m-L14} agreed well with λ_{HP} , with RMSE of 0.05 W m⁻¹ K⁻¹; Therefore,
 - \checkmark Improved λ_{m-L14} estimates using ρ_{b-v} led to improved G_{m-L14} (with RMSE decreased from 5.7 to 4.3 W m⁻²).
 - At 6- and 10-cm depths, $\rho_{\rm b}$ varied slightly and had negligible effect on $G_{\rm m}$ data.
- 5. Effect of θ on λ modeling and G estimate
 - **The models** not only produced reliable λ estimates with dynamic TDR θ_{τ} , but also captured the abrupt changes in λ (Fig. 4a) and G (Fig. 4b) due to rainfall events;
 - Using soil sampling θ_s , the models gave good estimates of λ and G at the specific measuring moment, but missed λ and G dynamics shortly after rainfalls (Fig. 4a, Fig. 4b).

Conclusions

- 1. For the gradient method, modeled λ_m can be used to produced reliable near-surface G;
- 2. Both Lu et al. (2007) and Lu et al. (2014) models performed well in estimating field λ_m ;
- 3. Comparing with the gravimetric method, the TDR technique has the advantage of capturing the dynamics of θ_{τ} , thus provides continuous λ_{m} and G_{m} shortly after rainfalls.
- 4. For near-surface layers (i.e., within 2 cm), it is necessary to include the temporal variations of $\rho_{\rm b}$ for estimating $\lambda_{\rm m}$ and $G_{\rm m}$ accurately.
- 5. With the modelling approach, one can estimate soil heat flux density G using existing measurements of soil water content, temperature, and bulk density, which eliminates the needs of measuring thermal conductivity with complicated equipment.

References

- Lu, S., Ren, T., Gong, Y., Horton, R., 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71(1), 8–14.
- Lu, Y.L., Lu, S., Horton, R., Ren, T., 2014. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil Sci. Soc. Am. J. 78:1859–1868.

Acknowledgements

National Science Foundation of China (41271238) High End Foreign Expert Program of China (GDT20141100002)

