The effect of fertilizer nitrogen source and N stabilizers on spring barley grain yield

Roche, L.^{1,3}, Forrestal, P.J.¹, Lanigan, G.J.¹, Richards, K.G.¹, Shaw, L.J.³, Hackett, R.², Wall, D.P.¹ ¹Teagasc, Environment, Soils and Land Use Research Department ,Johnstown Castle, Co. Wexford, Ireland ²Teagasc, Crop Science Research Department ,Oakpark , Co Carlow, Ireland ³Department of Geography and Environmental Science, University of Reading, UK

Introduction

- Calcium ammonium nitrate (CAN) is the dominant N fertilizer used in Ireland.
- N fertilizer applications contribute substantially to environmental N losses.
- These N losses also represent an economic loss to farmers. \succ
- An alternative N source is Urea which is cheaper per unit N.
- However, Urea can contribute to increased ammonia losses.
- Governmental legislation limits quantity of N that can be applied which may negatively impact production in high yielding crops (e.g. spring barley).
- N stabilizer technologies used with Urea fertilizers could maintain or improve yields while simultaneously reducing environmental N losses.

Results

Table 1. Apparent fertilizer recovery for both sites in both years

1 1					
	CAN	Urea	Urea + n-BTPT	Urea + DCD	Urea + n-BTPT + DCD
<u>2013</u>					
Long-term arable	47	49	58	50	46
Short-term arable	62	46	68	58	44
<u>2014</u>					
Long-term arable	63	57	69	60	62
Short-term arable	60	52	53	41	55
Mean AFR	58	51	62	52	52

Yield

- Grain yield was consistently higher on the short-term arable site compared to the long-term arable site (Figure 2).
- N fertilizer (@150 kg N ha⁻¹) significantly increased grain yield compared to the unfertilized control at both sites in both years (Figure 2).
- There were no significant differences in grain yield between the different N fertilizer sources at either site in either year (Figure 2).

Apparent Fertilizer Recovery (AFR)

- Urea + n-BTPT produced the highest mean AFR (highest for both sites in 2013 and for the long term arable site in 2014) (Table 1).
- Urea and urea + DCD fertilizer treatments produced lower mean AFR across both sites and years (Table 1).

Summary

- Grain yield was similar regardless of the N fertilizer source used.
- Apparent fertilizer recovery was increased using urea + the urease inhibitor n-BTPT compared with CAN.
- Overall this data shows that changing N fertilizer source (i.e. from CAN to Urea) can maintain (if not improve) grain yields.
- Applying Urea + n-BTPT increases recovery and efficiency of this N source.

eagasc

Agriculture Food and the Marine Bia agus Mara

Greenhouse Gas Research Initiative - Ireland

C		
S		

Spring barley grain yield (150 kg N ha⁻¹ applied)

Figure 2. Spring barley grain yield for both sites in both years

DCD

BTPT +

DCD

*Mean comparisons using F-protected LSD test (P<0.05) *Different letters represent significant differences within graphs