Optimizing NFT-NSS Chamber Techniques for Greenhouse Gas Emissions Measurements from Feedyard Pen Surfaces

K.D. Casey¹, H.M. Waldrip², R.W. Todd², and N.A. Cole²

1 - Texas A&M AgriLife Research, Amarillo, Texas, USA

2 - USDA-ARS, Bushland, Texas, USA

INTRODUCTION

The US beef industry is responsible for 198 Tg of carbon dioxide equivalents (CO₂-eq) annually which is 3.4% of the total national greenhouse gas (GHG) emissions (Stackhouse et al., 2011). The Texas Panhandle is the largest cattle feeding area within the US contributing 42% of the national beef production. Approximately, 5 million tonnes of manure is produced each year in beef cattle feedyards in the region leading to environmental pollution including GHGs (Sweeten et al., 2012). Little information exists on the GHG emissions from feedyards and accurate methods are required to estimate GHG emissions from feedyards under High Plains' conditions.

Adopted Protocol Rationale and Issues

Analytical Protocol and Issues

Ten chamber bases are installed on a Friday in a recently emptied pen.

- Emission rate varies spatially
- Greater chamber numbers yield a better average and allows exploration of different areas within pen
- Compromise with labor and resource availability
 - One operator can manage 10 chambers

- GHG emissions inventory is dominated by Enteric emissions.
- GHG emissions inventory for the feedlot manure \bullet management system is dominated by methane in mass terms but by nitrous oxide in CO_2 -eq terms.
- Little research has been undertaken on CH₄ and N₂O \bullet emissions from feedlot manure management systems and particularly under climatic conditions and management strategies representative of this major US cattle feeding region.
- IPCC Workbook (& EPA Reporting Rule) N₂O Emission Factor = $0.02 \text{ N}_2\text{O}-\text{N/kg}$ Kjdl N excreted

GHG EMISSION MEASUREMENT

Non-Flow Through – Non-Steady State Chambers

- Widely used in soil and environmental science
 - Gracenet & other protocols
- Measure relatively small area
 - Influence of spatial and temporal variability
- Potential to influence emission rate if poorly

Recently Emptied Pen

- Animals would disturb bases & chamber caps and/or potentially be injured
- Cannot practically 'guard' bases for any length of time while animals are present

Chamber Details

- 8 in. dia PVC Pipe Cap.
 - Septa equipped sampling port
 - 1/8 in. dia balance tube.
- 8 in dia steel pipe Base
 - Lower edge sharpened to aid installation ____
 - Installed 3 in. into manure pack ____
 - Rubber skirt rolled up to seal Cap to Base
- Measurements conducted from the following Monday to Friday for each study.

Installation Option Issues

- Testing evaluated installation of chamber bases in feedlot pens
 - a) Steel pipe Base driven 3 in. into manure pack
 - b) Manure and/or sand piled around chamber
 - c) Plastic skirt w/wo weights attached to chamber
- Measured fluxes were higher and more consistent \bullet with driven bases -> leakage was occurring with other base systems

Very wide concentration ranges

Much greater than that experienced in cropping or pasture system measurements

								FREQUEN	CY TABLES		
		FREQUEN	CY TABLES			CO2		CH4		N2O	
02		CH4		N20		Bin	Frequency		Frequency		Frequenc
	_		_		_	300	0	1.5	0	0.2	
Bin	Frequency	Bin	Frequency	Bin	Frequency	400	24	2	383	0.3	4
300	0	1.5	0	0.25	0	500	938	2.5	1183	0.4	
400	6	1.75	2	0.5	1898	600	154	3	779	0.5	
500	1053	2		0.75		700 800	108 120	4.5	538 138	0.6	
600						900	120	4.5	84	0.7	
		2.25		1		1000	131	10	436	0.9	
700	216	2.5	83	1.25	1	1500	471	15	250	1	
800	103	3	10	More	0	2000	332	20	127	1.25	
900	52	3.5	1			2500	293	25	81	1.5	
1000		More	0			3000	183	50	216	1.75	
		wore	U			3500	168	75	51	2	
1100	12					4000	150	100	32	2.25	
1200	5					5000	270	200	56	2.5	
1200						6000	171	300	27	2.75	:
						7000	140	400	12	3	
						8000	108	500	5	4	
						9000	81	600	1	5	
						10000 11000	75	700	1	6	
						12000	51 39	More	0	8	
						12000	39			9	
						14000	30			10	
						15000	29			25	
						16000	20			50	
						17000	14			75	
						18000	18			100	
						19000	10			200	
						20000	11			300	
						21000	11			400	1
						22000	12			500	
						23000	6			More	
						24000	7				440

We currently run 7 level calibration standards CO₂: 301, 501, 998, 5000, 10000, 20000, 50000 ppm CH₄: 1.5, 5.01, 10, 100, 499, 2000, 10000 ppm N₂O: 0.26, 1.01, 5.1, 25, 75.1, 150, 300 ppm

- conducted
- Chamber environment (T & BP)
- Chamber base installation
- Chamber base effect
- Non-real time measurements
 - Gas Chromatograph

Figure 1. View of NFT-NSS chamber and base with temperature sensors installed adjacent to the base.

Figure 2. View of NFT-NSS chamber under moist condition compared with dry conditions in Figure 1.

Installation of bases can fracture soil, resulting in temporarily enhanced emissions

- Gracenet Protocol
 - Wait at least 24 hours before taking measurements
- Testing confirmed an enhanced flux following installation of chamber bases in feedlot pens
 - Wait at least 48 hours before taking measurements —
 - Bases are installed on a Friday afternoon
 - Measurements from the following Monday to Friday for each study

Figure 5. Installing bases under dry conditions in feedyard pen.

Flux Calculation Procedure Options

- **GHG** Calibration Issues
- Electron Capture Detectors (N₂O) are not linear
 - May be treated as linear by some analysts over a limited range.
 - A lab running cropping samples may not know their linear range!
- Our system is linear up to about 10 ppm
 - Analyze using low range calibration curve
 - Any chromatograms with indicated concentration > 10 ppm are reprocess using high range calibration.

SUMMARY OUTCOMES

- Unique Issues in measuring GHG emissions from pen surfaces
- Small 'insignificant' variations from protocol turn your results to 'manure'!
 - Good measurement strategy and equipment
 - Sample collection and storage
 - Sample analysis
 - Know your system MDL
 - Know your concentration range
- Flux calculation
- Temporally Variable Results
 - Large influence of rainfall events

Figure 3. NFT-NSS chamber with top installed and sealing skirt rolled up.

Figure 4. Two rows of five NFT-NSS chambers installed in a pen.

Adopted NFT-NSS Chamber Measurement Protocol

- NFT-NSS chambers are used to sample emissions from pen surfaces.
- All study measurements for are performed starting at 12:00 h US Central Standard Time (CST).
- Ten chamber bases are installed in a recently emptied pen in two rows on a Friday afternoon
- Measurements are conducted from the following Monday to Friday for each study
- Four samples collected over 30 min (0, 10, 20, 30)
- Quadratic flux calculation procedure

- Linear Regression (LR)
- Quadratic Method (Quad)
- Hutchinson and Mosier (H/M)
- Pedersen HMR (HMR) _____

Adopted Quadratic Method as response can be nonlinear.

Linear (Measurements: 1,2,4) -	Poly. (Measurements: 1,2,4)		3) 1)
 – Linear (Measurements: 1,2,4) – Poly. (Measurements: 1,3,4) – = 4.848x + 0.458 	Poly. (Measurements: 1,2,4)	 – – Linear (Measurements: 1,3,4 Poly. (Measurements: 2,3,4) y = -2.16x 	1) (² + 5.928x + 0.398
Poly. (Measurements: 1,3,4) -		Poly. (Measurements: 2,3,4) y = -2.16x	² + 5.928x + 0.398
= 4.848x + 0.458	Lineai (Measurennenis. 2,3,4	y = -2.16x	x² + 5.928x + 0.398
	_		
		<u></u>	
	A LEAST		
and the second se			
0.05 $Y \neq \Theta R_{10} Y = 0$ 0.1	5 0.20 $Y = \frac{0.025}{0.25}$ R ² = #N/A		0.45 y 1
-	0.05 <u>ΥΥθθ.10</u> Υ=0 0.1 RR ² # NVXR ² = #N/A	инор инор и = 0	0.05 <u>Y</u> + 0 0 0.15 0.20 <u>Y</u> 0 0 0.35 0.40

- Fast response to changing microclimate
- Challenges in data analysis study

ACKNOWLEDGEMENTS

This research was supported in part by an Agriculture and Food Research Initiative Competitive Grant no. TS-2010-01613 from the USDA National Institute of Food and Agriculture, Texas A&M AgriLife Research and the Texas Cattle Feeders Association.

USDA

United States Department of Agriculture National Institute of Food and Agriculture

