AT THE BYU ENVIRONMENTAL BIOPHYSICAL CHEMISTRY LAB

STUDY OBJECTIVES

NCREASE N EFFICIENCY

IMPROVE AGROECONOMICS

DECREASE ANTHROPOGENIC POLLUTANTS

DECREASE GREENHOUSE GAS EMISSIONS

Broadcast topdressing fertilizer N application for turfgrass is a common practice. These applications result in loss of N to the atmosphere via nitrous oxide (N₂O) emissions and ammonia (NH₂) volatilization. Control release fertilizers potentially increase N efficiency and decrease atmospheric N loss.

Objectives:

- Quantify nitrous oxide (N₂O) and ammonia (NH₃) emissions for conventional and control release fertilizers
- Evaluate the effectiveness of Polymer Coated (PCU) and Polymer Sulfur conventional uncoated urea

Figure 1: Semi enclosed system allowing capture of N gas emissions for sampling

METHODS

• Treatments: 1) untreated control, each treatment recieved an application of twenty fertilizer prills 2) 146 g N m⁻² uncoated urea, 3) 104 g N m⁻² PCU (Duration 45[™]) and 4) 111 g N m⁻² PSCU (PCU and PSCU from Agrium Advanced Technologies, Loveland, CO, USA); replicated four time in Random Design

• Treatments surfaced applied to 65% water filled pore space Timpanogos Loam

• Soil and fertilizer incubated in a semi enclosed system under constant temperature environment. Soil was placed inside a 4 cm diameter x 12.7 cm long PVC cylinder nested inside a 7.75 cm diameter x 15.3 cm PVC cylinder. The area in-between cylinders was filled with dry, medium sized quartz sand. The top of outer cylinder was sealed with a rubber cap. The bottom of the cylinders were left open to the atmosphere so that when the gas sampler evacuated the headspace air for analysis, air could be replaced via flow upward through the sand (refer to figure 2)

• The entire headspace air was collected every 20 minutes using Innova 1309 multiplexer and analyzed for N₂O and NH₂ using an Innova 1412 Photoacoustic, Field Gas analyzer (Lumasense Technologies, Santa Clara, CA, USA)

• Significance between treatment daily means done with ANOVA, with a Tukey-Kramer means separation.

BRIGHAM YOUNG UNIVERSITY

EVALUATION OF NITROGEN GAS LOSS FROM POLYMER COATED AND POLYMER SULFUR COATED UREA

Coated (PSCU) Urea in reducing N₂O and NH₃ emissions compared to

Figure 2: 4cm diameter PVC cylinder nested within the 7.75cm cylinder with sand filling the medium to allow for air flow during sampling.

PCU

• NH₃ volatilization equal to control a -Urea > PCU 43 out of 48 days (figu

• N₂O emissions 1.9 times greater that -Urea > PCU 15 days

-PCU > Control 32 days (figure 5) **PSCU**

- NH₂ volatilization 1.6 times greater -PSCU > control 15 days (figure 3)
- N₂O 2.3 times greater than both cor
- -Urea > PSCU 3 days (figure 5)

Soil NH, and NO,

 PSCU and PCU both contain 5.9 tim -Possible explanation for significar • PSCU NO₂ < Urea NO₂ (figure 6) Tentatively accounted between 75-93

Figure 3: Daily concentrations of NH₃ gas emissions from soils that have been treated with uncoated urea, PCU, and PSCU fertilizers compared to an unfertilized control. Bars at top of graph represent days where the treatments were significantly different from each other.

4.5 ■ Control ■ PCU ■ PSCU ■ Urea 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

N2O

Figure 4: Cumulative concentrations of N₂O and NH₃ gas emissions from soils that have been treated with uncoated urea, PCU, and PSCU fertilizers compared to an unfertilized control. Letters on top of bars represent statistical difference.

Jeffrey D. Svedin, Curtis J. Ransom, and Bryan G. Hopkins BRIGHAM YOUNG UNIVERSITY, PROVO, UT; HOPKINS@BYU.EDU

RESULTS AND DISCUSSION

and 4.9 times less th gure 3) nan control but 1.2 t			
than control but 3 t ontrol and PCU, 1.1 t			-3 Jour 1
nes less soil NH ₄ tha nt decrease in PCU a			
93% of applied N Verage Emi	ssions		
rea > PSCU, PCU, & Contro	ol		
CU		Control	
		PCU	
		Urea	
24	36	48	

Days after Fertilizer Application

Cumulative N₂O and NH₃ Emissions

NH3

Figure 5: Daily concentrations of N₂O gas emissions from soils that have been treated with uncoated urea, PCU, PSCU fertilizers compared to an unfertilized control. Bars at top of graph represent days where the treatments were significantly different from each other.

fertilizer application of PCU, PSCU, uncoated urea, and control. Letters next to bars represent statistical difference.

Polymer coated and polymer sulfur coated urea were found to emit significantly less N₂O and NH₃ than uncoated urea. PCU reduced volatilization equal to the control, eliminating loss of fertilizer applied N through this mechanism. PSCU reduced NH₃ volatilization, though not as great as PCU. Quantification of N₂O and NH₃ emissions supports previous research that polymer and sulfur coatings reduce N gas loss. In this study PCU was more effective at reducing N gas loss; this may be due to a shorter shelf life of PSCU, or quicker degradation of the polymer coating due to sulfuric acid build up.

CONCLUSIONS