Phosphorus in the Coarse Soil Fraction is Related to Organic P Mineralization **Measured by Isotopic Dilution**

Materials and Methods

RESULTS

P_o in the Coarse Fraction (CF) as an Estimator of P_o Mineralization

There was a positive association between P_0 in the CF and P_0 mineralized in 6 and 13 days measured by isotopic dilution (Figure 1). This association was not observed when evaluating other potential estimators such as total P and P_o in non-fractionated soil samples, total P in the coarse fraction, microbial P, or phytate-like P (data not shown). The association in day 1 was not significant probably due to the un-steady state caused during soil labeling (at day 0).

C Respiration as an Estimator of P_o Mineralization Rate

The association between respiration rates (mg C kg⁻¹ d⁻¹) and mineralization rates (mg P kg⁻¹ d⁻¹) was statistically significant (Table 1) but presented a low coefficient of determination. The incorporation of the $C_{t}:P_{o}$ ratio of the soil (non-fractioned) did not improve the model significantly. However, the incorporation of the C_t:P_o ratio of the CF to the model significantly improved the coefficient of determination.

The concentration of P_o in the CF of the soil (>53 μ m) was significantly related to P_o mineralization measured by isotopic dilution. Thus, the concentration of P_o in the CF surges as a promising indicator to differentiate soils according to their P_o mineralization potential, without focusing on the actual rate of mineralization which will be affected by other factors such as temperature and water content. In order to estimate P_o mineralization rates, we recommend to measure soil respiration and correct it by the C₊:P_o ratio of the CF.

Acknowledgments: This work was partly supported by the Swiss National Science Foundation (grant no. 3100A0-122141), the International Plant Nutrition Institute (IPNI), and grants funded by the UGA graduate school and the Fulbright commission

Nicolas Wyngaard^{1,2*}, Miguel Cabrera², and Else Bünemann³ (*niwyngaa@uga.edu) ¹UNMdP (Argentina), ²University of Georgia (United States), ³ETH Zurich (Switzerland)

> <u>Measuring</u> or <u>estimating</u> organic $P(P_0)$ mineralization would help to better quantify plant available P

This would potentially improve P fertilizer recommendations, reducing the economic and environmental impact of fertilization

• Soil samples (0 to 20 cm) from Delaware, Maryland, and Iowa never fertilized (Control) or fertilized (>10 years) with mineral P or poultry litter. • Quantification of gross P_o mineralization rate measured by the isotopic dilution method (Oehl et al., 2001) at 1, 6 and 13 days of incubation. Measurement of potential estimators of P_o mineralization $\mathbf{v} \rightarrow P_o$ in the coarse fraction of the soil (CF) (>53 µm) (suggested by Ciampitti et al., 2013) C respiration (suggested by Ciampitti et al, 2013; Achat et al., 2010)

	Model	Significance
Respiration (Resp)	Gross P _{min} = 0.26 + 0.24 Resp [†]	0.002
Resp + C:P _{Total}	Gross $P_{min} = 0.82 + 0.24 \text{ Resp}^{+} - 0.01 \text{ C:P}_{Total}$	0.003
Resp + C:P _{CF}	Gross P _{min} = 1.7 + 0.20 Resp ⁺ – 0.0049 C:P _{CF} ⁺	0.000

Conclusions

Can we measure P mineralization?

Second Expensive (b) Complex A Hazardous

